Skip to main content
Log in

Interaction with an obstacle in the 2D focusing nonlinear Schrödinger equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present a numerical study of solutions to the 2d cubic and quintic focusing nonlinear Schrödinger equation in the exterior of a smooth, compact and strictly convex obstacle (a disk) with Dirichlet boundary condition. We first investigate the effect of the obstacle on the behavior of solutions traveling towards the obstacle at different angles and with different velocities directions. We introduce a new concept of weak and strong interactions of the solutions with the obstacle. Next, we study the existence of blow-up solutions depending on the type of the interaction and show how the presence of the obstacle changes the overall behavior of solutions (e.g., from blow-up to global existence), especially in the strong interaction case, as well as how it affects the shape of solutions compared to their initial data (e.g., splitting into transmitted and reflected parts). We also investigate the influence of the size of the obstacle on the eventual existence of blow-up solutions in the strong interaction case in terms of the transmitted and the reflected parts of the mass. Moreover, we show that the sharp threshold for global existence vs. finite time blow-up solutions in the mass critical case in the presence of the obstacle is the same as the one given by Weinstein for NLS in the whole Euclidean space \(\mathbb {R}^d\). Finally, we construct new wall-type initial data that blows up in finite time after a strong interaction with an obstacle and having a very distinct dynamics compared with all other blow-up scenarios and dynamics for the NLS in the whole Euclidean space \(\mathbb {R}^d\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G., Dougalis, V.A., Karakashian, O.: Solving the systems of equations arising in the discretization of some nonlinear PDE’s by implicit Runge-Kutta methods. RAIRO Modél. Math. Anal. Numér. 31(2), 251–287 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Akrivis, G.D.: Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Anton, R.: Global existence for defocusing cubic NLS and Gross-Pitaevskii equations in three dimensional exterior domains. J. Math. Pures Appl. 89 (9) 4, 335–354 (2008)

  4. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82(4), 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Besse, C.: Schéma de relaxation pour l’équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C.R. Acad. Sci. Paris Sér I Math. 326(12), 1427–1432 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Besse, C.: A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42(3), 934–952 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40(1), 26–40 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Blair, M.D., Smith, H.F., Sogge, C.D.: Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary. Math. Ann. 354(4), 1397–1430 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Burq, N., Gérard, P., Tzvetkov, N.: On nonlinear Schrödinger equations in exterior domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(3), 295–318 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Coffman, C.V.: Uniqueness of the ground state solution for \(\Delta u - u + u^3=0\) and a variational characterization of other solutions. Arch. Ration. Mech. Anal. 46, 81–95 (1972)

    MATH  Google Scholar 

  11. Cooper, J., Strauss, W.A.: Energy boundedness and decay of waves reflecting off a moving obstacle. Indiana Univ. Math. J. 25(7), 671–690 (1976)

    MathSciNet  MATH  Google Scholar 

  12. Delfour, M., Fortin, M., Payre, G.: Finite-difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44(2), 277–288 (1981)

    MathSciNet  MATH  Google Scholar 

  13. Dodson, B.: Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state. Adv. Math. 285, 1589–1618 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Duyckaerts, T., Holmer, J., Roudenko, S.: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15(6), 1233–1250 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Duyckaerts, T., Landoulsi, O., and Roudenko, S.: Threshold solutions in the focusing 3D cubic NLS equation outside a strictly convex obstacle. J. Funct. Anal. 282(5), Paper No. 109326, 55 (2022)

  16. Duyckaerts, T., Roudenko, S.: Threshold solutions for the focusing 3d cubic Schrödinger equation. Rev. Mat. Iberoam. 26(1), 1–56 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Fang, D., Xie, J., Cazenave, T.: Scattering for the focusing energy-subcritical nonlinear Schrödinger equation. Sci. China Math. 54(10), 2037–2062 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Gidas, B., Ni, W. M., and Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\bf R}^{n}\). In Math. Analysis and Applications, Part A, vol. 7 of Adv. in Math. Suppl. Stud. Academic Press, New York pp. 369–402 (1981)

  19. Guevara, C.D.: Global behavior of finite energy solutions to the \(d\)-dimensional focusing nonlinear Schrödinger equation. Appl. Math. Res. Express. AMRX. 2, 177–243 (2014)

    MATH  Google Scholar 

  20. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Comm. Math. Phys. 282(2), 435–467 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Ivanovici, O.: Precised smoothing effect in the exterior of balls. Asymptot. Anal. 53(4), 189–208 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Ivanovici, O.: On the Schrödinger equation outside strictly convex obstacles. Analysis & PDE 3(3), 261–293 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Ivanovici, O., Planchon, F.: On the energy critical Schrödinger equation in \(3\) D non-trapping domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(5), 1153–1177 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Ivriĭ, V.J.: Exponential decay of the solution of the wave equation outside an almost star-shaped region. Dokl. Akad. Nauk SSSR 189, 938–940 (1969)

    MathSciNet  Google Scholar 

  25. Karakashian, O., Akrivis, G.D., Dougalis, V.A.: On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30(2), 377–400 (1993)

    MathSciNet  MATH  Google Scholar 

  26. Killip, R., Visan, M., Zhang, X.: Riesz transforms outside a convex obstacle. Internat. Math. Res. Not. 2016(19), 5875–5921 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Killip, R., Visan, M., Zhang, X.: The focusing cubic NLS on exterior domains in three dimensions. Appl. Math. Res. Express. AMRX. 1, 146–180 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Klein, C., Roudenko, S., and Stoilov, N.: Numerical study of Zakharov-Kuznetsov equations in two dimensions. J. Nonlinear Sci. 31(2), Paper No. 26, 28 (2021)

  29. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({ R}^n\). Arch. Rational Mech. Anal. 105(3), 243–266 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Landoulsi, O.: Dynamics of the nonlinear focusing Schrödinger equation outside of a smooth, compact and convex obstacle. PhD thesis, University Sorbonne Paris Nord, (2020)

  31. Landoulsi, O.: Construction of a solitary wave solution of the nonlinear focusing Schrödinger equation outside a strictly convex obstacle in the \(L^2\)-supercritical case. Discrete Contin. Dyn. Syst. 41(2), 701–746 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Landoulsi, O.: On blow-up solutions to the nonlinear Schrödinger equation in the exterior of a convex obstacle. Dyn. Partial Differ. Equ. 19(1), 1–22 (2022)

    MathSciNet  MATH  Google Scholar 

  33. Lax, P.D., Morawetz, C.S., Phillips, R.S.: The exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle. Bull. Amer. Math. Soc. 68, 593–595 (1962)

    MathSciNet  MATH  Google Scholar 

  34. Lax, P.D., Morawetz, C.S., Phillips, R.S.: Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle. Comm. Pure Appl. Math. 16, 477–486 (1963)

    MathSciNet  MATH  Google Scholar 

  35. Morawetz, C.S.: The decay of solutions of the exterior initial-boundary value problem for the wave equation. Comm. Pure Appl. Math. 14, 561–568 (1961)

    MathSciNet  MATH  Google Scholar 

  36. Morawetz, C.S.: The limiting amplitude principle. Comm. Pure Appl. Math. 15, 349–361 (1962)

    MathSciNet  MATH  Google Scholar 

  37. Morawetz, C.S., Ralston, J.V., Strauss, W.A.: Decay of solutions of the wave equation outside nontrapping obstacles. Comm. Pure Appl. Math. 30(4), 447–508 (1977)

    MathSciNet  MATH  Google Scholar 

  38. Morawetz, C.S., Ralston, J.V., and Strauss, W.A.: Correction to: “Decay of solutions of the wave equation outside nontrapping obstacles” (CPAM 30 (1977), no. 4, 447–508). Comm. Pure Appl. Math. 31(6), 795 (1978)

  39. Olson, D., Shukla, S., Simpson, G., Spirn, D.: Petviashvilli’s method for the Dirichlet problem. J. Sci. Comput. 66(1), 296–320 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Pelinovsky, D.E., Stepanyants, Y.A.: Convergence of Petviashvili’s iteration method for numerical approximation of stationary solutions of nonlinear wave equations. SIAM J. Numer. Anal. 42(3), 1110–1127 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Petviashvili, V.I.: Equation of an extraordinary soliton. Fizika Plazmy 2, 469–472 (1976)

    Google Scholar 

  42. Planchon, F., and Vega, L.: Bilinear virial identities and applications. Ann. Sci. Éc. Norm. Supér. 42 (4) 2, 261–290 (2009)

  43. Roudenko, S., Wang, Z., Yang, K.: Dynamics of solutions in the generalized Benjamin-Ono equation: a numerical study. J. Comp. Phys. 445, 110570 (2021)

    MathSciNet  MATH  Google Scholar 

  44. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian problems. Applied Mathematics and Mathematical Computation, vol. 7. Chapman & Hall, London (1994)

  45. Sanz-Serna, J.M., Verwer, J.G.: Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal. 6(1), 25–42 (1986)

    MathSciNet  MATH  Google Scholar 

  46. Weideman, J.A.C., Herbst, B.M.: Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23(3), 485–507 (1986)

    MathSciNet  MATH  Google Scholar 

  47. Weinstein, M. I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87(4), 567–576 (1982/83)

  48. Wilcox, C.H.: Spherical means and radiation conditions. Arch. Rational Mech. Anal. 3, 133–148 (1959)

    MathSciNet  MATH  Google Scholar 

  49. Yang, K., Roudenko, S., Zhao, Y.: Blow-up dynamics and spectral property in the \(L^2\)-critical nonlinear Schrödinger equation in high dimensions. Nonlinearity 31(9), 4354–4392 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Yang, K., Roudenko, S., Zhao, Y.: Blow-up dynamics in the mass super-critical NLS equations. Phys. D 396, 47–69 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

All authors would like to thank Thomas Duyckaerts (Paris-13) for fruitful discussions on this problem. Most of the research on this project was done while O.L. was visiting the Department of Mathematics and Statistics at Florida International University, Miami, FL, during his PhD training. He thanks the department for its hospitality and support. The initial numerical investigations started when K.Y. visited T. Duyckaerts at IHP and LAGA, Paris-13.

Funding

Research of K.Y was partially supported by the Fundamental Research Funds for the Central Universities Project No.2023CDJXY-042 (PI: Yang), and partially supported by the NSF grant DMS-1927258 (PI: Roudenko). Research of S.R. was partially supported by the NSF grant DMS-1927258, and part of O.L.’s research visit to FIU was funded by the same grant DMS-1927258 (PI: Roudenko).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Jon Wilkening

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landoulsi, O., Roudenko, S. & Yang, K. Interaction with an obstacle in the 2D focusing nonlinear Schrödinger equation. Adv Comput Math 49, 71 (2023). https://doi.org/10.1007/s10444-023-10055-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10055-x

Keywords

Mathematics Subject Classification (2010)

Navigation