Skip to main content
Log in

On pointwise error estimates for Voronoï-based finite volume methods for the Poisson equation on the sphere

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we give pointwise estimates of a Voronoï-based finite volume approximation of the Laplace-Beltrami operator on Voronoï-Delaunay decompositions of the sphere. These estimates are the basis for local error analysis, in the maximum norm, of the approximate solution of the Poisson equation and its gradient. Here, we consider the Voronoï-based finite volume method as a perturbation of the finite element method. Finally, using regularized Green’s functions, we derive quasi-optimal convergence order in the maximum-norm with minimal regularity requirements. Numerical examples show that the convergence is at least as good as predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer Science & Business Media (2013)

  2. Augenbaum, J.M., Peskin, C.S.: On the construction of the Voronoi mesh on a sphere. J. Comput. Phys. 59(2), 177–192 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbeiro, S.: Supraconvergent cell-centered scheme for two dimensional elliptic problems. Appl. Numer. Math. IMACS J. 59(1), 56–72 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baumgardner, J.R., Frederickson, P.O.: Icosahedral discretization of the two-sphere. SIAM J. Numer. Anal. 22(6), 1107–1115 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouche, D., Ghidaglia, J.-M., Pascal, F.: Error estimate and the geometric corrector for the upwind finite volume method applied to the linear advection equation. SIAM J. Numer. Anal. 43(2), 578–603 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner S., Scott R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer Science & Business Media (2007)

  8. Chen, Z., Li, R., Zhou, A.: A note on the optimal \(L^{2}\)-estimate of the finite volume element method. Adv. Comput. Math. 16(4), 291–303 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chou, S.-H., Kwak, D.Y., Li, Q.: \(L^{p}\) error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differential Equations 19(4), 463–486 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chou, S.-H., Li, Q.: Error estimates in \(L^{2}\), \(H^{1}\) and \(L^{\infty }\) in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comput. 69(229), 103–120 (2000)

    Article  MATH  Google Scholar 

  11. Chou, S.-H., Ye, X.: Superconvergence of finite volume methods for the second order elliptic problem. Comput. Methods Appl. Mech. Eng. 196(37), 3706–3712 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.G.: The finite element method for elliptic problems. SIAM (2002)

  13. Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47(2), 805–827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Despres, B.: Lax theorem and finite volume schemes. Math. Comput. 73(247), 1203–1234 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diskin, B., Thomas, J.L.: Notes on accuracy of finite-volume discretization schemes on irregular grids. Appl. Numer. Math. IMACS J. 60(3), 224–226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Droniou, J.: Introduction to discrete functional analysis techniques for the numerical study of diffusion equations with irregular data. ANZIAM J. Electron. Suppl. 56(C), c101–c127 (2014)

    MathSciNet  Google Scholar 

  17. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, Q., Gunzburger, M.D., Ju, L.: Constrained centroidal Voronoi tessellations for surfaces. SIAM J. Sci. Comput. 24(5), 1488–1506 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Du, Q., Gunzburger, M.D., Ju, L.: Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere. Comput. Methods Appl. Mech. Eng. 192(35), 3933–3957 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, Q., Ju, L.: Finite volume methods on spheres and spherical centroidal Voronoi meshes. SIAM J. Numer. Anal. 43(4), 1673–1692 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eymard, R., Gallouët, T., Herbin, R.: A cell-centered finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. 26(2), 326–353 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Eymard, R., Gallouët, T., Herbin, R.: Finite volume approximation of elliptic problems and convergence of an approximate gradient. Appl. Numer. Math. IMACS J. 37(1–2), 31–53 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gallouët, T., Herbin, R., Vignal, M.H.: Error estimates on the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37(6), 1935–1972 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gärtner, K., Kamenski, L.: Why do we need Voronoi cells and Delaunay meshes? essential properties of the Voronoi finite volume method. Comput. Math. Math. Phys. 59(12), 1930–1944 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Giraldo, F.X.: Lagrange-Galerkin methods on spherical geodesic grids. J. Comput. Phys. 136(1), 197–213 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Glitzky, A., Griepentrog, J.A.: Discrete sobolev-poincaré inequalities for Voronoi finite volume approximations. SIAM J. Numer. Anal. 48(1), 372–391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hebey, E.: Sobolev Spaces on Riemannian Manifolds, vol. 1635. Springer Science & Business Media (1996)

  30. Heikes, R.: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I: Basic design and results of tests. Mon. Weather Rev. 123(6), 1862–1880 (1995)

    Article  Google Scholar 

  31. Heikes, R., Randall, D.A.: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part II. A detailed description of the grid and an analysis of numerical accuracy. Mon. Weather Rev. 123(6), 1881–1887 (1995)

    Article  Google Scholar 

  32. Hjelle, Ø., Dæhlen, M.: Triangulations and Applications. Springer Science & Business Media (2006)

  33. Jianguo, H., Shitong, X.: On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35(5), 1762–1774 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ju, L., Du, Q.: A finite volume method on general surfaces and its error estimates. J. Math. Anal. Appl. 352(2), 645–668 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ju, L., Tian, L., Wang, D.: A posteriori error estimates for finite volume approximations of elliptic equations on general surfaces. Comput. Methods Appl. Mech. Eng. 198(5–8), 716–726 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kovács, B., Power Guerra, C.A.: Maximum norm stability and error estimates for the evolving surface finite element method. Numer. Methods Partial Differential Equations 34(2), 518–554 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kreiss, H.-O., Manteuffel, T.A., Swartz, B., Wendroff, B., White, A.B.: Supra-convergent schemes on irregular grids. Math. Comput. 47(176), 537–554 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kröner, H.: Approximative Green’s functions on surfaces and pointwise error estimates for the finite element method. Comput. Methods Appl. Math. 17(1), 51–64 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Leykekhman, D., Li, B.: Maximum-norm stability of the finite element Ritz projection under mixed boundary conditions. Calcolo 54(2), 541–565 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Leykekhman, D., Li, B.: Weak discrete maximum principle of finite element methods in convex polyhedra. Math. Comp. 90(327), 1–18 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, B.: Maximum-norm stability of the finite element method for the Neumann problem in nonconvex polygons with locally refined mesh. Math. Comp. 91(336), 1533–1585 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, R., Chen, Z., Wu, W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. CRC Press (2000)

  43. Lin, Y., Liu, J., Yang, M.: Finite volume element methods: an overview on recent developments. Int. J. Numer. Anal. Model. Ser. B 4(1), 14–34 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Manteuffel, T.A., White, A.B.: The numerical solution of second-order boundary value problems on nonuniform meshes. Math. Comput. 47(176), 511–535 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mishev, I.D.: Finite volume methods on Voronoi meshes. Numer. Methods for Partial Differential Equations 14(2), 193–212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Miura, H., Kimoto, M.: A comparison of grid quality of optimized spherical hexagonal-pentagonal geodesic grids. Mon. Weather Rev. 133(10), 2817–2833 (2005)

    Article  Google Scholar 

  47. Omnes, P.: On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes. ESAIM: Math. Model. Numer. Anal. 45(4), 627–650 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pascal, F.: On supra-convergence of the finite volume method for the linear advection problem. In: Paris-Sud Working Group on Modelling and Scientific Computing 2006–2007, vol. 18 of ESAIM Proc., pp. 38–47. EDP Sci., Les Ulis (2007)

  49. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38(158), 437–445 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  50. Renka, R.J.: Algorithm 773: SSRFPACK: interpolation of scattered data on the surface of a sphere with a surface under tension. ACM Trans. Math. Softw. (TOMS) 23(3), 435–442 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sadourny, R., Arakawa, A., Mintz, Y.: Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Mon. Weather Rev. 96(6), 351–356 (1968)

    Article  Google Scholar 

  52. Schatz A.H., Wahlbin L.B.: Interior maximum-norm estimates for finite element methods. II. Math. Comput. 64(211):907–928 (1995). MR1297478

  53. Schatz, A.: Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates. Math. Comput. Am. Math. Soc. 67(223), 877–899 (1998)

    Article  MATH  Google Scholar 

  54. Scott R.: Optimal \(L^{\infty }\) estimates for the finite element method on irregular meshes. Math. Comput. 30(136):681–697 (1976). MR0436617

  55. Stuhne, G.R., Peltier, W.R.: New icosahedral grid-point discretizations of the shallow water equations on the sphere. J. Comput. Phys. 148(1), 23–58 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  56. Williamson, D.L.: Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus 20(4), 642–653 (1968)

    Article  Google Scholar 

  57. Wu, H., Li, R.: Error estimates for finite volume element methods for general second-order elliptic problems. Numer. Methods for Partial Differential Equations 19(6), 693–708 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhang, T.: Superconvergence of finite volume element method for elliptic problems. Adv. Comput. Math. 40(2), 399–413 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is in memory of Saulo R. M. Barros, who participated in this work but tragically passed away in July 2021, prior to its conclusion. The work presented here was supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) through grant 2016/18445-7 and 2021/06176-0 and also by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES), Finance Code 001. Finally, we thank the anonymous referees for carefully reading the manuscript and for perceptive comments, which have led to an improvement in the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo A. Poveda.

Ethics declarations

Conflict of interest

Each author has contributed substantially to conducting the underlying research and writing this manuscript. Furthermore, they have no financial or other conflicts of interest to disclose.

Additional information

Communicated by: Aihui Zhou

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poveda, L.A., Peixoto, P. On pointwise error estimates for Voronoï-based finite volume methods for the Poisson equation on the sphere. Adv Comput Math 49, 36 (2023). https://doi.org/10.1007/s10444-023-10041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10041-3

Keywords

Mathematics Subject Classification (2010)

Navigation