Skip to main content
Log in

Weighted positive nonlinear finite volume method for dominated anisotropic diffusive equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a new positive finite volume scheme for degenerate parabolic equations with strongly anisotropic diffusion tensors. The key idea is to approximate the fluxes thanks to a weighted-centered scheme depending on the sign of the stiffness coefficients. More specifically, we employ a centered discretization for the mobility-like function when the transmissibilities are positive and a weighted harmonic scheme in regions where the negative transmissibilities occur. This technique prevents the formation of undershoots which entails the positivity-preserving of the approach. Also, the scheme construction retains the main elements, namely the coercivity and compactness estimates, allowing the existence and the convergence of the nonlinear finite volume scheme under general assumptions on the physical inputs, the nonlinearities, and the mesh. The numerical implementation of the methodology shows that the lower bound on the discrete solution is respected and optimal convergence rates are recovered on strongly anisotropic various test-cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afif, M., Amaziane, B.: Convergence of finite volume schemes for a degenerate convection–diffusion equation arising in flow in porous media. Comput. Methods Appl. Mech. Eng. 191(46), 5265–5286 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, H. W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(3), 311–341 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235(14), 4015–4031 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreianov, B., Cancès, C., Moussa, A.: A nonlinear time compactness result and applications to discretization of degenerate parabolic–elliptic PDEs. J. Funct. Anal. 273(12), 3633–3670 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bendahmane, M., Khalil, Z., Saad, M.: Convergence of a finite volume scheme for gas–water flow in a multi-dimensional porous medium. Math. Models Methods Appl. Sci. 24(01), 145–185 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, K., Masson, R.: Convergence of a vertex centred discretization of two-phase Darcy flows on general meshes. Int. J. Finite Volumes 10, 1–37 (2013)

    MATH  Google Scholar 

  7. Brenner, K., Masson, R., Quenjel, E. H.: Vertex approximate gradient discretization preserving positivity for two-phase Darcy flows in heterogeneous porous media. J. Comput. Phys. 409, 109357 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cancès, C., Guichard, C.: Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85(298), 549–580 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cancès, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17(6), 1525–1584 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cancès, C., Ibrahim, M., Saad, M.: Positive nonlinear CVFE scheme for degenerate anisotropic Keller-Segel system. SMAI J. Comput. Math. 3, 1–28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chamoun, G., Saad, M., Talhouk, R.: Monotone combined edge finite volume–finite element scheme for anisotropic keller–segel model. Numer. Methods Partial Differ. Equ. 30(3), 1030–1065 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chavent, G., Jaffré, J.: Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows Through Porous Media, vol. 17. North-Holland, Amsterdam (1986). Stud. Math. Appl. edition

    MATH  Google Scholar 

  13. Chertock, A., Kurganov, A.: A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111(2), 169–205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, vol. 159. Springer Science & Business Media (2013)

  15. Evans, L. C.: Partial Differential Equations, vol. 19. American Mathematical Society (2010)

  16. Eymard, R., Gallouët, T., Hilhorst, D., Slimane, Y. N.: Finite volumes and nonlinear diffusion equations. ESAIM: Math. Model. Numer. Anal. 32(6), 747–761 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eymard, R., Hilhorst, D., Vohralík, M.: A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems. Numer. Math. 105(1), 73–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Forsyth, P. A.: A control volume finite element approach to napl groundwater contamination. SIAM J. Sci. Stat. Comput. 12(5), 1029–1057 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fořt, J., Fürst, J., Halama, J., Herbin, R., Hubert, F.: Finite Volumes for Complex Applications VI Problems & perspectives: FVCA 6, International Symposium, Prague, June 6–10, 2011, vol. 4. Springer Science & Business Media (2011)

  20. Gao, Z., Wu, J.: A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes. SIAM J. Sci Comput. 37(1), A420–A438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghilani, M., Quenjel, E. H., Saad, M.: Positive control volume finite element scheme for a degenerate compressible two-phase flow in anisotropic porous media. Comput. Geosci. 23(1), 55–79 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghilani, M., Quenjel, E. H., Saad, M.: Positivity-preserving finite volume scheme for compressible two-phase flows in anisotropic porous media: the densities are depending on the physical pressures. J. Comput. Phys. 407, 109233 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R., Herard, J.-M. (eds.) Finite Volumes for Complex Applications V, pp 659–692. Wiley (2008)

  24. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein. 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Ibrahim, M., Quenjel, E. H., Saad, M.: Positive nonlinear DDFV scheme for a degenerate parabolic system describing chemotaxis. Comput. Math. Appl. 80(12), 2972–3003 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaviany, M.: Principles of Heat Transfer in Porous Media. Springer Science & Business Media (2012)

  27. Lv, J., Yuan, G., Yue, J.: Nonnegativity-preserving repair techniques for the finite element solutions of degenerate nonlinear parabolic problems. Numer. Math Theory Methods Appl. 11(3), 413–436 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mitra, K., Pop, I.: A modified L-scheme to solve nonlinear diffusion problems. Comput. Math. Appl. 77(6), 1722–1738 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Otto, F.: L1-contraction and uniqueness for quasilinear elliptic–parabolic equations. J. Diff. Equ. 131(1), 20–38 (1996)

    Article  MATH  Google Scholar 

  30. Quenjel, E. H.: Enhanced positive vertex-centered finite volume scheme for anisotropic convection-diffusion equations. ESAIM: Math. Model. Numer. Anal. 54(2), 591–618 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Quenjel, E. H.: Analysis of accurate and stable nonlinear finite volume scheme for anisotropic diffusion equations with drift on simplicial meshes. J. Sci. Comput. 88(3), 1–26 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Quenjel, E. H.: Nonlinear finite volume discretization for transient diffusion problems on general meshes. Appl. Numer. Math. 161, 148–168 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Quenjel, E.H., Saad, M., Ghilani, M., Bessemoulin-Chatard, M.: Convergence of a positive nonlinear DDFV scheme for degenerate parabolic equations. Calcolo 57(19) (2020)

  34. Su, S., Dong, Q., Wu, J.: A decoupled and positivity-preserving discrete duality finite volume scheme for anisotropic diffusion problems on general polygonal meshes. J Comput. Phys. 372, 773–798 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vázquez, J. L.: The Porous Medium Equation: Mathematical Theory. Oxford University Press on Demand (2007)

Download references

Acknowledgements

E.H. Quenjel would like to thank the Département de la Marne, Greater Reims, Région Grand Est, for their financial support of the Chair of Biotechnology of CentraleSupélec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Houssaine Quenjel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Olga Mula

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guichard, C., Quenjel, E.H. Weighted positive nonlinear finite volume method for dominated anisotropic diffusive equations. Adv Comput Math 48, 81 (2022). https://doi.org/10.1007/s10444-022-09995-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09995-7

Keywords

Mathematics Subject Classification (2010)

Navigation