Abstract
We propose a Bayesian approach for parameter uncertainty quantification in macroscopic traffic flow models from cross-sectional data. We consider both a simple first order model consisting in the mass conservation equation and its second order version including a speed evolution equation. A bias term is introduced and modeled as a Gaussian process to account for the traffic flow models limitations. We validate the results comparing the error in the macroscopic variables (flow, speed, density) for both models, showing that second order models globally perform better in reconstructing traffic quantities of interest.
Similar content being viewed by others
References
Aw, A., Rascle, M.: Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000)
Bayarri, M. J., Berger, J. O., Kennedy, M. C., Kottas, A., Paulo, R., Sacks, J., Cafeo, J. A., Lin, C. -H., Tu, J.: Predicting vehicle crashworthiness: validation of computer models for functional and hierarchical data. J. Am. Stat. Assoc. 104(487), 929–943 (2009)
Bertino, E., Duvigneau, R., Goatin, P.: Uncertainty quantification in a macroscopic traffic flow model calibrated on GPS data. Math Biosci. Eng. 17(2), 1511–1533 (2020)
Brynjarsdóttir, J., O’Hagan, A.: Learning about physical parameters: the importance of model discrepancy. Inverse Probl. 30(11), 114007 (2014)
Carmassi, M., Barbillon, P., Chiodetti, M., Keller, M., Parent, E.: Bayesian calibration of a numerical code for prediction. J. Soc. Fr. Stat. 160(1), 1–30 (2019)
Chalons, C., Goatin, P.: Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling. Commun. Math. Sci. 5(3), 533–551 (2007)
Chiabaut, N., Buisson, C., Leclercq, L.: Fundamental diagram estimation through passing rate measurements in congestion. IEEE Trans. Intell. Transp. Syst. 10(2), 355–359 (2009)
Chiarello, F. A., Friedrich, J., Goatin, P., Göttlich, S.: Micro-macro limit of a nonlocal generalized Aw-Rascle type model. SIAM J. Appl Math. 80(4), 1841–1861 (2020)
Colombo, R. M., Groli, A.: On the initial boundary value problem for Temple systems. Nonlinear Anal. 56(4), 569–589 (2004)
Corbetta, A., Muntean, A., Vafayi, K.: Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method. Math Biosci. Eng. 12(2), 337–356 (2015)
Crandell, I., Millican, A. J., Leman, S., Smith, E., Alexander, W. N., Devenport, W. J., Vasta, R., Gramacy, R., Binois, M.: Anomaly detection in large-scale wind tunnel tests using gaussian processes. In: 33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, p 4131 (2017)
Dafermos, C. M.: Hyperbolic conservation laws in continuum physics, vol. 3. Springer, Berlin (2005)
Daganzo, C. F.: The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. Part B 28(4), 269–287 (1994)
Davis, S. F.: Simplified second-order Godunov-type methods. SIAM J. Sci. Statist. Comput. 9(3), 445–473 (1988)
Delle Monache, M. L., Chi, K., Chen, Y., Goatin, P., Han, K., Qiu, J. -M., Piccoli, B.: A three-phase fundamental diagram from three-dimensional traffic data. Axioms 10(1), 17 (2021)
Dervisoglu, G., Gomes, G., Kwon, J., Horowitz, R., Varaiya, P.: Automatic calibration of the fundamental diagram and empirical observations on capacity. In: Transportation Research Board 88th Annual Meeting, vol. 15, pp 31–59. Citeseer (2009)
Fan, S.: Data-fitted generic second order macroscopic traffic flow models. ProQuest LLC, Ann Arbor. Thesis (Ph.D.)–Temple University (2013)
Fan, S., Herty, M., Seibold, B.: Comparative model accuracy of a data-fitted generalized Aw-R,ascle-Zhang model. Netw Heterog. Media 9(2), 239–268 (2014)
Fan, S., Sun, Y., Piccoli, B., Seibold, B., Work, D. B.: A collapsed generalized Aw-Rascle-Zhang model and its model accuracy (2017)
Flegal, J.M., Hughes, J., Vats, D., Dai, N.: mcmcse: Monte Carlo standard errors for MCMC. Riverside, CA, Denver, CO, Coventry, UK, and Minneapolis, MN. R package version 1.4-1 (2020)
Franklin, R.: The structure of a traffic shock wave. Civil Eng. Pulb. Wks. Rev. 56, 1186–1188 (1961)
Gerster, S., Herty, M., Iacomini, E.: Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation. arXiv:2102.09359 (2021)
Godunov, S. K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47(89), 271–306 (1959)
Gomes, S. N., Stuart, A. M., Wolfram, M.-T.: Parameter estimation for macroscopic pedestrian dynamics models from microscopic data. SIAM J. Appl Math. 79(4), 1475–1500 (2019)
Göttlich, S., Knapp, S.: Artificial neural networks for the estimation of pedestrian interaction forces. In: Gibelli, L (ed.) Crowd Dynamics, Volume 2: Theory, Models, and Applications, pp 11–32. Springer International Publishing, Cham (2020)
Göttlich, S., Totzeck, C.: Optimal control for interacting particle systems driven by neural networks. arXiv:2101.12657 (2021)
Gramacy, R. B.: Surrogates: Gaussian process modeling, design, and optimization for the applied sciences. CRC Press, Boca Raton (2020)
Harten, A., Lax, P. D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1), 35–61 (1983)
Herty, M., Fazekas, A., Visconti, G.: A two-dimensional data-driven model for traffic flow on highways. Netw. Heterog. Media 13(2), 217–240 (2018)
Herty, M., Tosin, A., Visconti, G., Zanella, M.: Reconstruction of traffic speed distributions from kinetic models with uncertainties. arXiv:1912.03706 (2019)
Higdon, D., Kennedy, M., Cavendish, J. C., Cafeo, J. A., Ryne, R. D.: Combining field data and computer simulations for calibration and prediction. SIAM J. Sci. Comput. 26(2), 448–466 (2004)
Hoff, P. D.: A first course in Bayesian statistical methods, vol. 580. Springer, Berlin (2009)
Huang, J., Gramacy, R. B., Binois, M., Libraschi, M.: On-site surrogates for large-scale calibration. Appl. Stoch. Model. Bus. Ind. 36(2), 283–304 (2020)
Iglesias, M., Stuart, A. M.: Inverse problems and uncertainty quantification. SIAM News 2–3 (2014)
Kennedy, M. C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc. B: (Stat. Methodol.) 63(3), 425–464 (2001)
Lebacque, J.-P., Haj-Salem, H., Mammar, S.: Second order traffic flow modeling: supply-demand analysis of the inhomogeneous Riemann problem and of boundary conditions. In: Proceedings of the 10th Euro Working Group on Transportation (EWGT), vol. 3(3) (2005)
Lebacque, J. -P., Mammar, S., Salem, H. H.: Generic second order traffic flow modelling. In: Transportation and Traffic Theory 2007. Papers Selected for Presentation at ISTTT17Engineering and Physical Sciences Research Council (Great Britain) Rees Jeffreys Road Fund Transport Research Foundation TMS ConsultancyOve Arup and Partners. Hong Kong Transportation Planning (International) PTV AG (2007)
Lighthill, M. J., Whitham, G. B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A 229, 317–345 (1955)
Liu, F., Bayarri, M., Berger, J., et al.: Modularization in Bayesian analysis, with emphasis on analysis of computer models. Bayesian Anal. 4(1), 119–150 (2009)
Marmin, S., Filippone, M.: Variational calibration of computer models. arXiv:1810.12177 (2018)
Matlab: version 9.9.0.1467703 (r2020b). Website: https://fr.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html. Accessed 22 Aug 2022
Minnesota Department of Transportation: Mn/Dot Traffic Data. Website: http://data.dot.state.mn.us/datatools/. Accessed 29 June 2021
Mollier, S., Delle Monache, M. L., de Wit, C. C., Seibold, B.: Two-dimensional macroscopic model for large scale traffic networks. Transp. Res. B: Methodol. 122, 309–326 (2019)
Newell, G.: A theory of traffic flow in tunnels. Theory of Traffic Flow, pp. 193–206 (1961)
Ngoduy, D., Hoogendoorn, S.: An automated calibration procedure for macroscopic traffic flow models. IFAC Proceedings 36(14), 263–268 (2003). 10th IFAC Symposium on Control in Transportation Systems 2003, Tokyo, Japan, 4–6 August 2003
Pereira, M., Baykas, P. B., Kulcsár, B., Lang, A.: Parameter and density estimation from real-world traffic data: a kinetic compartmental approach. arXiv:2101.11485 (2021)
Piccoli, B., Han, K., Friesz, T. L., Yao, T., Tang, J.: Second-order models and traffic data from mobile sensors. Transp. Res. C: Emerg. Technol. 52, 32–56 (2015)
Plumlee, M.: Bayesian calibration of inexact computer models. J. Am. Stat. Assoc. 112(519), 1274–1285 (2017)
Polson, N., Sokolov, V.: Bayesian analysis of traffic flow on interstate i-55: the LWR model. Ann. Appl. Stat. 9(4), 1864–1888 (2015)
Rasmussen, C. E., Williams, C.: Gaussian processes for machine learning. MIT Press, Massachusetts (2006)
Richards, P. I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)
Stein, M. L.: Interpolation of spatial data: some theory for kriging. Springer Science & Business Media, Berlin (2012)
Strofylas, G., Porfyri, K., Nikolos, I., Delis, A., Papageorgiou, M.: Using synchronous and asynchronous parallel differential evolution for calibrating a second-order traffic flow model. Adv. Eng. Softw. 125, 1–18 (2018)
Temple, B.: Systems of conservation laws with invariant submanifolds. Trans. Am. Math. Soc. 280(2), 781–795 (1983)
Tuo, R., Jeff Wu, C.: A theoretical framework for calibration in computer models: parametrization, estimation and convergence properties. SIAM/ASA J. Uncertain. Quantif. 4(1), 767–795 (2016)
Wagner, P.: Fluid-dynamical and microscopic description of traffic flow: a data-driven comparison. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 368(1928), 4481–4495 (2010)
Wang, Y., Papageorgiou, M.: Real-time freeway traffic state estimation based on extended Kalman filter: a general approach. Transp. Res. B: Methodol. 39(2), 141–167 (2005)
Work, D. B., Blandin, S., Tossavainen, O. -P., Piccoli, B., Bayen, A. M.: A traffic model for velocity data assimilation. Appl. Math. Res Express. AMRX 1–35 (2010)
Zhang, H. M.: A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. Part B 36(3), 275–290 (2002)
Funding
This work has been supported by the French government, through the 3IA Côte d’Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Communicated by: Helge Holden
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A: Least square approach
Appendix A: Least square approach
A commonly used approach to calibrate the optimal parameters is the minimization of a least square cost function taking both the real data and simulated data into account (see, e.g. [45, 53, 56]). Accordingly, the calibration is based on the minimization of the following cost function
Thus, the optimal parameter 𝜃∗ is given by
The bounds for the three-dimensional parameter space Θ are those defined in the right columns of Table 1. The optimization results for the calibration parameters are summarized in Table 7.
Comparing the errors reported in Table 8 with those of Tables 3 and 6, we conclude that both the optimization and the Bayesian approaches greatly outperform this basic calibration procedure, thus evidencing the benefit of introducing a bias term.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Würth, A., Binois, M., Goatin, P. et al. Data-driven uncertainty quantification in macroscopic traffic flow models. Adv Comput Math 48, 75 (2022). https://doi.org/10.1007/s10444-022-09989-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-022-09989-5
Keywords
- Macroscopic traffic flow models
- Godunov scheme
- Loop detector traffic data
- Bayesian calibration
- Parameter estimation
- Optimization