Skip to main content
Log in

Data-driven uncertainty quantification in macroscopic traffic flow models

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We propose a Bayesian approach for parameter uncertainty quantification in macroscopic traffic flow models from cross-sectional data. We consider both a simple first order model consisting in the mass conservation equation and its second order version including a speed evolution equation. A bias term is introduced and modeled as a Gaussian process to account for the traffic flow models limitations. We validate the results comparing the error in the macroscopic variables (flow, speed, density) for both models, showing that second order models globally perform better in reconstructing traffic quantities of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aw, A., Rascle, M.: Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayarri, M. J., Berger, J. O., Kennedy, M. C., Kottas, A., Paulo, R., Sacks, J., Cafeo, J. A., Lin, C. -H., Tu, J.: Predicting vehicle crashworthiness: validation of computer models for functional and hierarchical data. J. Am. Stat. Assoc. 104(487), 929–943 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertino, E., Duvigneau, R., Goatin, P.: Uncertainty quantification in a macroscopic traffic flow model calibrated on GPS data. Math Biosci. Eng. 17(2), 1511–1533 (2020)

    Article  MathSciNet  Google Scholar 

  4. Brynjarsdóttir, J., O’Hagan, A.: Learning about physical parameters: the importance of model discrepancy. Inverse Probl. 30(11), 114007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carmassi, M., Barbillon, P., Chiodetti, M., Keller, M., Parent, E.: Bayesian calibration of a numerical code for prediction. J. Soc. Fr. Stat. 160(1), 1–30 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Chalons, C., Goatin, P.: Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling. Commun. Math. Sci. 5(3), 533–551 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiabaut, N., Buisson, C., Leclercq, L.: Fundamental diagram estimation through passing rate measurements in congestion. IEEE Trans. Intell. Transp. Syst. 10(2), 355–359 (2009)

    Article  Google Scholar 

  8. Chiarello, F. A., Friedrich, J., Goatin, P., Göttlich, S.: Micro-macro limit of a nonlocal generalized Aw-Rascle type model. SIAM J. Appl Math. 80(4), 1841–1861 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colombo, R. M., Groli, A.: On the initial boundary value problem for Temple systems. Nonlinear Anal. 56(4), 569–589 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corbetta, A., Muntean, A., Vafayi, K.: Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method. Math Biosci. Eng. 12(2), 337–356 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crandell, I., Millican, A. J., Leman, S., Smith, E., Alexander, W. N., Devenport, W. J., Vasta, R., Gramacy, R., Binois, M.: Anomaly detection in large-scale wind tunnel tests using gaussian processes. In: 33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, p 4131 (2017)

  12. Dafermos, C. M.: Hyperbolic conservation laws in continuum physics, vol. 3. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  13. Daganzo, C. F.: The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. Part B 28(4), 269–287 (1994)

    Article  Google Scholar 

  14. Davis, S. F.: Simplified second-order Godunov-type methods. SIAM J. Sci. Statist. Comput. 9(3), 445–473 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delle Monache, M. L., Chi, K., Chen, Y., Goatin, P., Han, K., Qiu, J. -M., Piccoli, B.: A three-phase fundamental diagram from three-dimensional traffic data. Axioms 10(1), 17 (2021)

    Article  Google Scholar 

  16. Dervisoglu, G., Gomes, G., Kwon, J., Horowitz, R., Varaiya, P.: Automatic calibration of the fundamental diagram and empirical observations on capacity. In: Transportation Research Board 88th Annual Meeting, vol. 15, pp 31–59. Citeseer (2009)

  17. Fan, S.: Data-fitted generic second order macroscopic traffic flow models. ProQuest LLC, Ann Arbor. Thesis (Ph.D.)–Temple University (2013)

  18. Fan, S., Herty, M., Seibold, B.: Comparative model accuracy of a data-fitted generalized Aw-R,ascle-Zhang model. Netw Heterog. Media 9(2), 239–268 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fan, S., Sun, Y., Piccoli, B., Seibold, B., Work, D. B.: A collapsed generalized Aw-Rascle-Zhang model and its model accuracy (2017)

  20. Flegal, J.M., Hughes, J., Vats, D., Dai, N.: mcmcse: Monte Carlo standard errors for MCMC. Riverside, CA, Denver, CO, Coventry, UK, and Minneapolis, MN. R package version 1.4-1 (2020)

  21. Franklin, R.: The structure of a traffic shock wave. Civil Eng. Pulb. Wks. Rev. 56, 1186–1188 (1961)

    Google Scholar 

  22. Gerster, S., Herty, M., Iacomini, E.: Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation. arXiv:2102.09359 (2021)

  23. Godunov, S. K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47(89), 271–306 (1959)

    MathSciNet  MATH  Google Scholar 

  24. Gomes, S. N., Stuart, A. M., Wolfram, M.-T.: Parameter estimation for macroscopic pedestrian dynamics models from microscopic data. SIAM J. Appl Math. 79(4), 1475–1500 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Göttlich, S., Knapp, S.: Artificial neural networks for the estimation of pedestrian interaction forces. In: Gibelli, L (ed.) Crowd Dynamics, Volume 2: Theory, Models, and Applications, pp 11–32. Springer International Publishing, Cham (2020)

  26. Göttlich, S., Totzeck, C.: Optimal control for interacting particle systems driven by neural networks. arXiv:2101.12657 (2021)

  27. Gramacy, R. B.: Surrogates: Gaussian process modeling, design, and optimization for the applied sciences. CRC Press, Boca Raton (2020)

    Book  Google Scholar 

  28. Harten, A., Lax, P. D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1), 35–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Herty, M., Fazekas, A., Visconti, G.: A two-dimensional data-driven model for traffic flow on highways. Netw. Heterog. Media 13(2), 217–240 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Herty, M., Tosin, A., Visconti, G., Zanella, M.: Reconstruction of traffic speed distributions from kinetic models with uncertainties. arXiv:1912.03706 (2019)

  31. Higdon, D., Kennedy, M., Cavendish, J. C., Cafeo, J. A., Ryne, R. D.: Combining field data and computer simulations for calibration and prediction. SIAM J. Sci. Comput. 26(2), 448–466 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hoff, P. D.: A first course in Bayesian statistical methods, vol. 580. Springer, Berlin (2009)

    Book  Google Scholar 

  33. Huang, J., Gramacy, R. B., Binois, M., Libraschi, M.: On-site surrogates for large-scale calibration. Appl. Stoch. Model. Bus. Ind. 36(2), 283–304 (2020)

    Article  MathSciNet  Google Scholar 

  34. Iglesias, M., Stuart, A. M.: Inverse problems and uncertainty quantification. SIAM News 2–3 (2014)

  35. Kennedy, M. C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc. B: (Stat. Methodol.) 63(3), 425–464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lebacque, J.-P., Haj-Salem, H., Mammar, S.: Second order traffic flow modeling: supply-demand analysis of the inhomogeneous Riemann problem and of boundary conditions. In: Proceedings of the 10th Euro Working Group on Transportation (EWGT), vol. 3(3) (2005)

  37. Lebacque, J. -P., Mammar, S., Salem, H. H.: Generic second order traffic flow modelling. In: Transportation and Traffic Theory 2007. Papers Selected for Presentation at ISTTT17Engineering and Physical Sciences Research Council (Great Britain) Rees Jeffreys Road Fund Transport Research Foundation TMS ConsultancyOve Arup and Partners. Hong Kong Transportation Planning (International) PTV AG (2007)

  38. Lighthill, M. J., Whitham, G. B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A 229, 317–345 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, F., Bayarri, M., Berger, J., et al.: Modularization in Bayesian analysis, with emphasis on analysis of computer models. Bayesian Anal. 4(1), 119–150 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Marmin, S., Filippone, M.: Variational calibration of computer models. arXiv:1810.12177 (2018)

  41. Matlab: version 9.9.0.1467703 (r2020b). Website: https://fr.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html. Accessed 22 Aug 2022

  42. Minnesota Department of Transportation: Mn/Dot Traffic Data. Website: http://data.dot.state.mn.us/datatools/. Accessed 29 June 2021

  43. Mollier, S., Delle Monache, M. L., de Wit, C. C., Seibold, B.: Two-dimensional macroscopic model for large scale traffic networks. Transp. Res. B: Methodol. 122, 309–326 (2019)

    Article  Google Scholar 

  44. Newell, G.: A theory of traffic flow in tunnels. Theory of Traffic Flow, pp. 193–206 (1961)

  45. Ngoduy, D., Hoogendoorn, S.: An automated calibration procedure for macroscopic traffic flow models. IFAC Proceedings 36(14), 263–268 (2003). 10th IFAC Symposium on Control in Transportation Systems 2003, Tokyo, Japan, 4–6 August 2003

    Google Scholar 

  46. Pereira, M., Baykas, P. B., Kulcsár, B., Lang, A.: Parameter and density estimation from real-world traffic data: a kinetic compartmental approach. arXiv:2101.11485 (2021)

  47. Piccoli, B., Han, K., Friesz, T. L., Yao, T., Tang, J.: Second-order models and traffic data from mobile sensors. Transp. Res. C: Emerg. Technol. 52, 32–56 (2015)

    Article  Google Scholar 

  48. Plumlee, M.: Bayesian calibration of inexact computer models. J. Am. Stat. Assoc. 112(519), 1274–1285 (2017)

    Article  MathSciNet  Google Scholar 

  49. Polson, N., Sokolov, V.: Bayesian analysis of traffic flow on interstate i-55: the LWR model. Ann. Appl. Stat. 9(4), 1864–1888 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rasmussen, C. E., Williams, C.: Gaussian processes for machine learning. MIT Press, Massachusetts (2006)

    MATH  Google Scholar 

  51. Richards, P. I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  52. Stein, M. L.: Interpolation of spatial data: some theory for kriging. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  53. Strofylas, G., Porfyri, K., Nikolos, I., Delis, A., Papageorgiou, M.: Using synchronous and asynchronous parallel differential evolution for calibrating a second-order traffic flow model. Adv. Eng. Softw. 125, 1–18 (2018)

    Article  Google Scholar 

  54. Temple, B.: Systems of conservation laws with invariant submanifolds. Trans. Am. Math. Soc. 280(2), 781–795 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tuo, R., Jeff Wu, C.: A theoretical framework for calibration in computer models: parametrization, estimation and convergence properties. SIAM/ASA J. Uncertain. Quantif. 4(1), 767–795 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wagner, P.: Fluid-dynamical and microscopic description of traffic flow: a data-driven comparison. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 368(1928), 4481–4495 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Wang, Y., Papageorgiou, M.: Real-time freeway traffic state estimation based on extended Kalman filter: a general approach. Transp. Res. B: Methodol. 39(2), 141–167 (2005)

    Article  Google Scholar 

  58. Work, D. B., Blandin, S., Tossavainen, O. -P., Piccoli, B., Bayen, A. M.: A traffic model for velocity data assimilation. Appl. Math. Res Express. AMRX 1–35 (2010)

  59. Zhang, H. M.: A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. Part B 36(3), 275–290 (2002)

    Article  Google Scholar 

Download references

Funding

This work has been supported by the French government, through the 3IA Côte d’Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Würth.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Helge Holden

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Least square approach

Appendix A: Least square approach

A commonly used approach to calibrate the optimal parameters is the minimization of a least square cost function taking both the real data and simulated data into account (see, e.g. [45, 53, 56]). Accordingly, the calibration is based on the minimization of the following cost function

$$ \begin{array}{@{}rcl@{}} C(\theta) = \sum \limits_{(x,t) \in (X, T)} \left|y^{F}(x,t) - y^{M}(x,t,\theta)\right|^{2}. \end{array} $$

Thus, the optimal parameter 𝜃 is given by

$$ \begin{array}{@{}rcl@{}} \theta^{*} = \underset{\theta \in {\Theta}}{\text{argmin}} C(\theta). \end{array} $$

The bounds for the three-dimensional parameter space Θ are those defined in the right columns of Table 1. The optimization results for the calibration parameters are summarized in Table 7.

Table 7 Optimization results for the least squares approach

Comparing the errors reported in Table 8 with those of Tables 3 and 6, we conclude that both the optimization and the Bayesian approaches greatly outperform this basic calibration procedure, thus evidencing the benefit of introducing a bias term.

Table 8 Time-space error results for the least squares approach. In bold, the lowest flow, speed, density and total errors per data scenario

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Würth, A., Binois, M., Goatin, P. et al. Data-driven uncertainty quantification in macroscopic traffic flow models. Adv Comput Math 48, 75 (2022). https://doi.org/10.1007/s10444-022-09989-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09989-5

Keywords

Mathematics Subject Classification (2010)

Navigation