Skip to main content
Log in

Nonsmooth data optimal error estimates by energy arguments for subdiffusion equations with memory

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper considers the semidiscrete Galerkin finite element approximation for time fractional diffusion equations with memory in a bounded convex polygonal domain. We use novel energy arguments in conjunction with repeated applications of time integral operators to study the error analysis. Our error estimates cover both smooth and nonsmooth initial data cases. Since the continuous solution u of such models has singularity at t = 0 even for smooth initial data, we use tj, j = 1,2, type of weights to overcome the singular behavior at t = 0. Optimal order error estimates in both L2(Ω)- and H1(Ω)-norms are proved with respect to both convergence order of the approximate solution and regularity of the initial data. Moreover, a quasi-optimal pointwise in time error bound in the maximum norm is shown to hold for smooth initial data. In the end, we provide numerical results to support our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadias, L., Alvarez, E.: Fractional Cauchy problem with memory effects. Math. Nachr. 293(10), 1846–1872 (2020)

    Article  MathSciNet  Google Scholar 

  2. Akrivis, G., Chen, M., Yu, F., Zhou, Z.: The energy technique for the six-step BDF method. SIAM J. Numer. Anal. 59(5), 2449–2472 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balachandran, K., Trujillo, J.J.: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal. 72(12), 4587–4593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bramble, J. H., Pasciak, J. E., Schatz, A. H.: The construction of preconditioners for elliptic problems by substructuring. I Math. Comp. 47(175), 103–134 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cannon, J.R., Lin, Y.: Nonclassical H1 projection and Galerkin methods for nonlinear parabolic integro-differential equations. Calcolo 25(3), 187–201 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caputo, M.: Models of flux in porous media with memory. Water Resour. Res. 36(3), 693–705 (2000)

    Article  MathSciNet  Google Scholar 

  7. Chen, C., Shih, T.: Finite element methods for integrodifferential equations, Vol. 9, World Scientific Publishing Co., Inc., River Edge, NJ, (1998)

  8. El-Borai, M.M., El-Nadi, K.El-S., Ahmed, H.M., El-Owaidy, H.M., Ghanem, A.S., Sakthivel, R.: Existence and stability for fractional parabolic integro-partial differential equations with fractional Brownian motion and nonlocal condition. Cogent Math. Stat. 5(1), 1460030 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goswami, D., Pani, A.K., Yadav, S.: Optimal L2 estimates for the semidiscrete Galerkin method applied to parabolic integro-differential equations with nonsmooth data. ANZIAM J. 55(3), 245–266 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hecht, F.: New development in freefem++. J. Numer. Math. 20 (3-4), 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, L., Ren, Y., Sakthivel, R.: Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays. Semigroup Forum 79(3), 507–514 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35(2), 561–582 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445–466 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karaa, S., Mustapha, K., Pani, A.K.: Optimal error analysis of a FEM for fractional diffusion problems by energy arguments. J. Sci. Comput. 74 (1), 519–535 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krasnoschok, M., Pata, V., Vasylyeva, N.: Solvability of linear boundary value problems for subdiffusion equations with memory. J. Integral Equations Appl. 30(3), 417–445 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Le, K. N., McLean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker-Planck equation with general forcing. SIAM J. Numer. Anal. 54(3), 1763–1784 (2016)

  17. Lin, Y., Thomée, V., Wahlbin, L.B.: Ritz–Volterra projections to finite-element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28(4), 1047–1070 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mahata, S., Sinha, R.K.: On the existence, uniqueness and stability results for time-fractional parabolic integrodifferential equations. J. Integral Equations Appl. 32(4), 457–477 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mahata, S., Sinha, R.K.: Finite element method for fractional parabolic integro-differential equations with smooth and nonsmooth initial data. J. Sci. Comput. 87(1), 1–32 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comp. 87(313), 2259–2272 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mustapha, K., Schötzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34(4), 1426–1446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pani, A.K., Thomée, V., Wahlbin, L.B.: Numerical methods for hyperbolic and parabolic integro-differential equations. J. Integral Equations Appl. 4(4), 533–584 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ponce, R.: A subordination principle for subdiffusion equations with memory. J. Integral Equations Appl. 32(4), 479–493 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Prüss, J.: Evolutionary Integral Equations and Applications. Vol. 87, Birkhäuser Verlag, Basel, (1993)

  25. Rashid, M. H. M., El-Qaderi, Y.: Semilinear fractional integro-differential equations with compact semigroup. Nonlinear Anal. 71(12), 6276–6282 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25. Springer, Berlin (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their constructive comments and suggestions, which have improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantiram Mahata.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Bangti Jin

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this part we calculate a bound of \(\|{u^{\prime }(t)}\|_{p}\), p = 1, 2 for both smooth and nonsmooth initial data. For f = 0 with nonsmooth initial data u0, a bound of \(\|{u^{\prime }(t)}\|_{2}\) is given in (2.3). To obtain a bound for \(\|{u^{\prime }(t)}\|_{1}\), we apply interpolation of estimates \(\|{u^{\prime }(t)}\|\le Ct^{-1}\|{u_{0}}\|\) and \(\|{u^{\prime }(t)}\|_{2}\le Ct^{-1-\alpha }\|{u_{0}}\|\) to get

$$\begin{array}{@{}rcl@{}} \|{u^{\prime}(t)}\|_{1}\le Ct^{-1-\alpha/2}\|{u_{0}}\|, t>0. \end{array}$$
(A.1)

We next turn our attention to nonhomogeneous problem (1.1). Decompose (1.1) in two parts as

$$\begin{array}{@{}rcl@{}} \partial_{t}^{\alpha}v(t)+Av(t) &=&{{\int}_{0}^{t}}B(t,s)v(s) ds \quad \text{in}\quad {{\varOmega}}, \quad 0<t \leq T,\quad 0<\alpha<1, \\ v(t) &=& 0 \quad \text{on}\quad \partial{{\varOmega}}, \quad 0<t\leq T,\\ v(0)&=& u_{0}(x) \quad \text{in} \quad {{\varOmega}}, \end{array}$$
(A.2)

and

$$\begin{array}{@{}rcl@{}} \partial_{t}^{\alpha}w(t)+Aw(t) &=& f(t) \quad \text{in}\quad {{\varOmega}}, \quad 0<t \leq T,\quad 0<\alpha<1, \\ w(t) &=& 0 \quad \text{on}\quad \partial{{\varOmega}}, \quad 0<t\leq T,\\ w(0)&=&0 \quad \text{in} \quad {{\varOmega}}. \end{array}$$
(A.3)

Following [18, Theorem 3.4], for smooth initial data we can obtain \(\|{v^{\prime }(t)}\|\le C t^{-1+\alpha }\|{u_{0}}\|_{2}\) and \(\|{v^{\prime }(t)}\|_{2}\le C t^{-1}\|{u_{0}}\|_{2}\) for t > 0. By interpolation we get

$$\begin{array}{@{}rcl@{}} \|{v^{\prime}(t)}\|_{1}\le Ct^{-1+\alpha/2}\|{u_{0}}\|_{2}, t>0. \end{array}$$
(A.4)

Now, the solution for problem (A.3) (cf. [12]) is given by

$$\begin{array}{@{}rcl@{}} w(t)={{\int}_{0}^{t}}\widehat{E}(t-s)f(s) ds={{\int}_{0}^{t}}\widehat{E}(s)f(t-s) ds, \end{array}$$
(A.5)

where the operator \(\widehat {E}(t)\) is defined by

$$\begin{array}{@{}rcl@{}} \widehat{E}(t)\chi=\sum\limits_{j=1}^{\infty} t^{\alpha -1}E_{{\alpha},\alpha}(-\lambda_{j}t^{\alpha})(\chi,\phi_{j})\phi_{j}(x), t>0, \chi\in L^{2}({{\varOmega}}), \end{array}$$

with \(E_{{\alpha },\alpha }(-\lambda _{j}t^{\alpha })={\sum }_{j=0}^{\infty }\frac {(-\lambda _{j}t^{\alpha })^{j}}{\Gamma (j\alpha +\alpha )}\). Differentiating (A.5) with respect to time to have

$$\begin{array}{@{}rcl@{}} w^{\prime}(t)={{\int}_{0}^{t}}\widehat{E}(s)f^{\prime}(t-s) ds + \widehat{E}(t)f(0)={{\int}_{0}^{t}}\widehat{E}(t-s)f^{\prime}(s) ds + \widehat{E}(t)f(0). \end{array}$$

Invoking [12, Lemma 2.2] with p = 1,q = 0, we obtain for t > 0,

$$\begin{array}{@{}rcl@{}} \|{w^{\prime}(t)}\|_{1}&\le& {{\int}_{0}^{t}}\|{\widehat{E}(t-s)f^{\prime}(s)}\|_{1} ds + \|{\widehat{E}(t)f(0)}\|_{1}\\ &\le& C{{\int}_{0}^{t}}(t-s)^{-1+\alpha/2}\|{f^{\prime}(s)}\| ds + Ct^{-1+\alpha/2}\|{f(0)}\|\\ &\le& Ct^{\alpha/2}\|{f}\|_{C^{1}(L^{2})}+ Ct^{-1+\alpha/2}\|{f(0)}\|. \end{array}$$
(A.6)

In view of (A.4) and (A.6), we get for t > 0,

$$\begin{array}{@{}rcl@{}} \|{u^{\prime}(t)}\|_{1}\le \|{v^{\prime}(t)}\|_{1}+\|{w^{\prime}(t)}\|_{1}\le Ct^{-1+\alpha/2}\big(\|{u_{0}}\|_{2}+\|{f(0)}\|\big) + Ct^{\alpha/2}\|{f}\|_{C^{1}(L^{2})}. \end{array}$$
(A.7)

Similarly, putting p = 2,q = 1, in Lemma 2.2 [12, p. 565], we obtain

$$\begin{array}{@{}rcl@{}} \|{w^{\prime}(t)}\|_{2}&\le Ct^{\alpha/2}\|{f}\|_{C^{1}(\dot{H}^{1})}+ Ct^{-1+\alpha/2}\|{f(0)}\|_{1}, t>0. \end{array}$$

Thus, for positive time t,

$$\begin{array}{@{}rcl@{}} \|{u^{\prime}(t)}\|_{2}\le \|{v^{\prime}(t)}\|_{2}+\|{w^{\prime}(t)}\|_{2}\le Ct^{-1}\big(\|{u_{0}}\|_{2}+t^{\alpha/2}\|{f(0)}\|_{1}\big) + Ct^{\alpha/2}\|{f}\|_{C^{1}(\dot{H}^{1})}. \end{array}$$
(A.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahata, S., Sinha, R.K. Nonsmooth data optimal error estimates by energy arguments for subdiffusion equations with memory. Adv Comput Math 48, 51 (2022). https://doi.org/10.1007/s10444-022-09967-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09967-x

Keywords

Mathematics Subject Classification (2010)

Navigation