Skip to main content
Log in

Error estimates of H(div)-conforming method for nonstationary magnetohydrodynamic system

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we focus on pressure-robust analysis of a mixed finite element method for the numerical discretization of nonstationary magnetohydrodynamics system. The velocity field is discretized by divergence-conforming Raviart-Thomas spaces with interior penalties, and the magnetic equation is approximated by curl-conforming Nédélec edge elements. The main feature of the method is that it produces exactly divergence-free velocity approximation, and captures the strongest magnetic singularities. The results show that the proposed scheme meets a discrete unconditional energy stability and the numerical solution is well-posedness. In addition, a priori error estimates are given, in which the constants are independent of the Reynolds number. Finally, we provide several numerical results illustrating the good performance of the scheme and confirming the theoretical rates of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ait Ou Ammi, A., Marion, M.: Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the navier-Stokes equations. Numer. Math. 68, 189–213 (1994)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  Google Scholar 

  3. Baňas, L., Prohl, A.: Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations. Math. Comp. 79, 1957–1999 (2010)

    Article  MathSciNet  Google Scholar 

  4. Boffi, D.: Fortin operator and discrete compactness for edge elements. Numer Math. 87, 229–246 (2000)

    Article  MathSciNet  Google Scholar 

  5. Brenner, S.C.: Poincaré-Friedrichs inequalities for piecewise h1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MathSciNet  Google Scholar 

  6. Ciarlet, P.G.: The finite element method for elliptic problems ,vol. 4. North-Holland, Amsterdam  (1978)

  7. Cockburn, B., Kanschat, G., Schotzau, D.: A locally conservative LDG method for the incompressible navier-Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    Article  MathSciNet  Google Scholar 

  8. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the navier-Stokes equations. J. Sci. Comput. 31, 61–73 (2007)

    Article  MathSciNet  Google Scholar 

  9. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343 (2002)

    Article  MathSciNet  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: Runge-kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  Google Scholar 

  11. Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151, 221–276 (2000)

    Article  MathSciNet  Google Scholar 

  12. Dauge, M.: Singularities of corner problems and problems of corner singularities, in Actes du 30ème congrès d’Analyse numérique: CANum ’98 (Arles, 1998), vol. 6 of ESAIM Proc., Soc. Math. Appl. Indust., Paris, 19–40 (1999)

  13. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  14. Gerbeau, J. -F.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)

    Article  MathSciNet  Google Scholar 

  15. Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical methods for the magnetohydrodynamics of liquid metals. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  16. Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and navier-Stokes problems. Math. Comput. 74, 53–84 (2005)

    Article  MathSciNet  Google Scholar 

  17. Greif, C., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 199, 2840–2855 (2010)

    Article  MathSciNet  Google Scholar 

  18. Guermond, J.-L., Quartapelle, L.: On the approximation of the unsteady navier-Stokes equations by finite element projection methods. Numer. Math. 80, 207–238 (1998)

    Article  MathSciNet  Google Scholar 

  19. Gunzburger, M.D., Meir, A.J., Peterson, J.S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comp. 56, 523–563 (1991)

    Article  MathSciNet  Google Scholar 

  20. Guzmán, J., Shu, C. -W., Sequeira, F.A.: H (div) conforming and dg methods for incompressible euler’s equations. IMA J. Numer. Anal. 37, 1733–1771 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Han, Y., Hou, Y.: Robust error analysis of h (div)-conforming dg method for the time-dependent incompressible navier–stokes equations. J. Comput. Appl. Math. 390, 113365 (2021)

    Article  MathSciNet  Google Scholar 

  22. Han, Y., Hou, Y.: Semirobust analysis of an h (div)-conforming dg method with semi-implicit time-marching for the evolutionary incompressible navier–stokes equations. IMA. J. Numer. Anal. 42, 1568–1597 (2022)

  23. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations, IMA. J. Numer. Anal. 35, 767–801 (2015)

    Article  MathSciNet  Google Scholar 

  24. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  Google Scholar 

  25. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization. SIAM J. Numer Anal. 27, 353–384 (1990)

    Article  MathSciNet  Google Scholar 

  26. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  Google Scholar 

  27. Houston, P., Schötzau, D., Wei, X.: A mixed DG method for linearized incompressible magnetohydrodynamics. J. Sci. Comput. 40, 281–314 (2009)

    Article  MathSciNet  Google Scholar 

  28. Hu, K., Lee, Y.-J., Xu, J.: Helicity-conservative finite element discretization for incompressible mhd systems. J. Comput. Phys. 436, 110284 (2021)

    Article  MathSciNet  Google Scholar 

  29. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59, 492–544 (2017)

    Article  MathSciNet  Google Scholar 

  30. Layton, W., Tran, H., Trenchea, C.: Stability of partitioned methods for magnetohydrodynamics flows at small magnetic Reynolds number, in Recent advances in scientific computing and applications, vol. 586 of Contemp. Math., Amer. Math. Soc., Providence, RI 231–238 (2013)

  31. Lifschitz, A.E.: Magnetohydrodynamics and Spectral Theory, vol. 4. Kluwer Academic Publishers, Dordrecht (1989)

    Book  Google Scholar 

  32. Logg, A., Mardal, K.-A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method: The Fenics Book, vol. 84. Springer, Berlin (2012)

    Book  Google Scholar 

  33. Lorca, S.A., Boldrini, J.L.: The initial value problem for a generalized Boussinesq model. Nonlinear Anal. 36, 457–480 (1999)

    Article  MathSciNet  Google Scholar 

  34. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003)

    Book  Google Scholar 

  35. Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system, m2AN. Math. Model. Numer. Anal. 42, 1065–1087 (2008)

    Article  MathSciNet  Google Scholar 

  36. Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)

    Article  MathSciNet  Google Scholar 

  37. Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40(2002), 2171–2194 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Schroeder, P.W., Lehrenfeld, C., Linke, A., Lube, G.: Towards computable flows and robust estimates for inf-sup stable fem applied to the time-dependent incompressible navier–stokes equations. SeMA J. 75, 629–653 (2018)

    Article  MathSciNet  Google Scholar 

  39. Schroeder, P.W., Lube, G.: Pressure-robust analysis of divergence-free and conforming fem for evolutionary incompressible navier–stokes flows. J. Numer. Math. 25, 249–276 (2017)

    Article  MathSciNet  Google Scholar 

  40. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  Google Scholar 

  41. Shen, J., Yang, X.: Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete Contin. Dyn. Syst. Ser. B 8, 663–676 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees very much for their valuable comments and suggestions which helped to improve the quality of this paper.

Funding

This work is supported by the Natural Science Foundation of China (Nos. 11871467 and 12161141017), Shandong Province Natural Science Foundation (ZR2021QA054) and China Postdoctoral Science Foundation (2021M691951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shipeng Mao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Paul Houston

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Mao, S. & Sun, J. Error estimates of H(div)-conforming method for nonstationary magnetohydrodynamic system. Adv Comput Math 48, 55 (2022). https://doi.org/10.1007/s10444-022-09964-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09964-0

Keywords

Navigation