Skip to main content
Log in

A multilevel Newton’s method for the Steklov eigenvalue problem

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper proposes a new type of multilevel method for solving the Steklov eigenvalue problem based on Newton’s method. In this iteration method, solving the Steklov eigenvalue problem is replaced by solving a small-scale eigenvalue problem on the coarsest mesh and a sequence of augmented linear problems on refined meshes, derived by Newton step. We prove that this iteration scheme obtains the optimal convergence rate with linear complexity, which improves the overall efficiency of solving the Steklov eigenvalue problem. Moreover, an adaptive iteration scheme for multi eigenvalues based on this new multilevel method is given. Finally, some numerical experiments are provided to illustrate the efficiency of the proposed multilevel scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ahn, H.: Vibration of a pendulum consisting of a bob suspended from a wire. Quart. Appl. Math. 39, 109–117 (1981)

    Article  MathSciNet  Google Scholar 

  3. Andreev, A., Todorov, T.: Isoparametric finite element approximation of a Steklov eigenvalue problem. IMA J. Numer. Anal. 24, 309–322 (2004)

    Article  MathSciNet  Google Scholar 

  4. Armentano, M., Padra, C.: A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58, 593–601 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bramble, J., Osborn, J.: Approximation of Steklov eigenvalues of non-selfadjoint second-order elliptic operators. In: Aziz, A. (ed.) Mathematical Foundations of the Finite Element Method with Applications to PDEs, pp 387–408. Academic Press, New York (1972)

  6. Babuška, I., Osborn, J.: Finite element Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math Comput. 52 (186), 275–297 (1989)

    Article  MathSciNet  Google Scholar 

  7. Babuška, I., Osborn, J. In: Ciarlet P., Lions J. (eds.) : Eigenvalue Problems, Volume II of Handbook of Numerical Analysis. Elsevier Science B.V., North-Holland (1991)

  8. Benzi, M., Golub, G. H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  Google Scholar 

  9. Bergman, S., Schiffer, M.: Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Academic Press, New York (1953)

    MATH  Google Scholar 

  10. Bermudez, A., Rodriguez, R., Santamarina, D.: A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87, 201–227 (2000)

    Article  MathSciNet  Google Scholar 

  11. Bi, H., Yang, Y.: A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem. Appl. Math. Comput. 217 (23), 9669–9678 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Bi, H., Li, H., Yang, Y.: An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem. Appl. Numer. Math. 105, 64–81 (2016)

    Article  MathSciNet  Google Scholar 

  13. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991)

    Book  Google Scholar 

  14. Bucur, D., Ionescu, I.: Asymptotic analysis and scaling of friction parameters. Z. Angew. Math. Phys. 57, 1–15 (2006)

    Article  MathSciNet  Google Scholar 

  15. Cao, L., Zhang, L., Allegretto, W., Lin, Y.: Multiscale asymptotic method for Steklov eigenvalue equations in composite media. SIAM J. Numer. An. 51(1), 273–296 (2013)

    Article  MathSciNet  Google Scholar 

  16. Conca, C., Planchard, J., Vanninathanm, M.: Fluid and Periodic Structures. Wiley, New York (1995)

    Google Scholar 

  17. Garau, E., Morin, P.: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J. Numer. Anal. 31(3), 914–946 (2010)

    Article  MathSciNet  Google Scholar 

  18. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  19. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  20. Han, X., Li, Y., Xie, H.: A multilevel correction method for steklov eigenvalue problem by nonconforming finite element methods. Numer. Math. Theor. Meth. Appl. 8(3), 383–405 (2015)

    Article  MathSciNet  Google Scholar 

  21. He, Y., Li, Y., Xie, H., You, C., Zhang, N.: A multilevel newton’s method for eigenvalue problems. Appl. Math. 63(3), 281–303 (2018)

    Article  MathSciNet  Google Scholar 

  22. Hinton, D., Shaw, J.: Differential operators with spectral parameter incompletely in the boundary conditions. Funkcialaj Ekvac. 33, 363–385 (1990)

    MathSciNet  MATH  Google Scholar 

  23. Li, Q., Lin, Q., Xie, H.: Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations. Appl. Math. 58(2), 129–151 (2013)

    Article  MathSciNet  Google Scholar 

  24. Li, Q., Yang, Y.: A two-grid discretization scheme for the Steklov eigenvalue problem. J. Appl. Math. Comput. 36, 129–139 (2011)

    Article  MathSciNet  Google Scholar 

  25. Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006)

    Google Scholar 

  26. Lin, Q., Xie, H.: A multilevel correction type of adaptive finite element method for Steklov eigenvalue problems. In: Brandts, J., Chleboun, J., Korotov, S., Segeth, K., Šístek, J., Vejchodský, T. (eds.) Proceedings of the International Conference: Applications of Mathematics 2012, pp 134–143 (2012)

  27. Miao, C.: Computing eigenpairs in augmented Krylov subspace produced by Jacobi-Davidson correction equation. J. Comput. Appl. Math. 343, 363–372 (2018)

    Article  MathSciNet  Google Scholar 

  28. Monk, P., Zhang, Y.: An HDG method for the Steklov eigenvalue problem. IMA J. Numer. Anal. https://doi.org/10.1093/imanum/drab017 (2021)

  29. Russo, A., Alonso, A.: A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems. Comput. Math. Appl. 62(11), 4100–4117 (2011)

    Article  MathSciNet  Google Scholar 

  30. Saad, Y.: Numerical methods for large eigenvalue problems. SIAM (1992)

  31. Sleijpen, G., Vorst, H.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42(2), 267–293 (2000)

    Article  MathSciNet  Google Scholar 

  32. Sleijpen, G., Vorst, H.: The Jacobi-Davidson Method for Eigenvalue Problems and its Relation with Accelerated Inexact Newton Scheme. In: Margenov, S., Vassilevski, P. (eds.) Iterative Methods in Linear Algebra II, IMACS Series in Computational and Applied Mathematics 3, pp 377–389. IMACS, New Brunswick (1996)

  33. Xie, H.: A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34, 592–608 (2014)

    Article  MathSciNet  Google Scholar 

  34. Xie, M., Xu, F., Yue, M.: A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering. ESAIM Math. Model. Numer. Anal. 55(5), 1779–1802 (2021)

    Article  MathSciNet  Google Scholar 

  35. Xu, F., Xie, H., Xie, M., Yue, M.: A multigrid method for the ground state solution of Bose-Einstein condensates based on Newton iteration. BIT Numer. Math. 61(2), 645–663 (2021)

    Article  MathSciNet  Google Scholar 

  36. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Hehu Xie (Chinese Academy of Sciences) for his stimulating discussions and fruitful cooperation that have motivated this work. They also would like to thank the anonymous referees for their careful reading and valuable comments and suggestions that helped to improve the contents and presentation of this paper.

Funding

The work of the second author (F. Xu) was supported by the National Natural Science Foundation of China (11801021). The work of the third author (M. Xie) was supported by the National Natural Science Foundation of China (12001402, 12071343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manting Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Long Chen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, M., Xu, F. & Xie, M. A multilevel Newton’s method for the Steklov eigenvalue problem. Adv Comput Math 48, 33 (2022). https://doi.org/10.1007/s10444-022-09934-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09934-6

Keywords

Mathematics Subject Classification (2010)

Navigation