Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Advances in Computational Mathematics
  3. Article

A wavelet-in-time, finite element-in-space adaptive method for parabolic evolution equations

  • Open access
  • Published: 06 April 2022
  • volume 48, Article number: 17 (2022)
Download PDF

You have full access to this open access article

Advances in Computational Mathematics Aims and scope Submit manuscript
A wavelet-in-time, finite element-in-space adaptive method for parabolic evolution equations
Download PDF
  • Rob Stevenson  ORCID: orcid.org/0000-0001-7623-30601,
  • Raymond van Venetië1 &
  • Jan Westerdiep1 
  • 250 Accesses

  • 8 Citations

  • 1 Altmetric

  • Explore all metrics

Cite this article

Abstract

In this work, an r-linearly converging adaptive solver is constructed for parabolic evolution equations in a simultaneous space-time variational formulation. Exploiting the product structure of the space-time cylinder, the family of trial spaces that we consider are given as the spans of wavelets-in-time and (locally refined) finite element spaces-in-space. Numerical results illustrate our theoretical findings.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Alpert, B. K.: A class of bases in L2 for the sparse representation of integral operators. SIAM J. Math. Anal. 24, 246–262 (1993)

    Article  MathSciNet  Google Scholar 

  2. Andreev, R.: Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33(1), 242–260 (2013). https://doi.org/10.1093/imanum/drs014

    Article  MathSciNet  Google Scholar 

  3. Andreev, R.: Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations. SIAM J. Sci. Comput. 38(1), A216–A242 (2016). https://doi.org/10.1137/140998639

    Article  MathSciNet  Google Scholar 

  4. Binev, P., DeVore, R.: Fast computation in adaptive tree approximation. Numer. Math. 97(2):193–217 (2004)

  5. Binev, P., Fierro, F., Veeser, A.: Near-best adaptive approximation on conforming meshes. arXiv:1912.13437 (2019)

  6. Beranek, N., Reinhold, M.A., Urban, K.: A space-time variational method for optimal control problems. arXiv:2010.00345 (2020)

  7. Balder, R., Zenger, Ch.: The solution of multidimensional real Helmholtz equations on sparse grids. SIAM. J. Sci. Comput. 17(3), 631–646 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations – Convergence rates. Math. Comp. 70, 27–75 (2001)

    Article  MathSciNet  Google Scholar 

  9. Chegini, N. G., Stevenson, R. P.: Adaptive wavelets schemes for parabolic problems: Sparse matrices and numerical results. SIAM J. Numer. Anal. 49(1), 182–212 (2011)

    Article  MathSciNet  Google Scholar 

  10. Devaud, D.: Petrov-Galerkin space-time hp-approximation of parabolic equations in H1/2. IMA J. Numer. Anal. 40 (4), 2717–2745 (2020). https://doi.org/10.1093/imanum/drz036

    Article  MathSciNet  Google Scholar 

  11. Dyja, R., Ganapathysubramanian, B., van der Zee, K.G.: Parallel-in-space-time, adaptive finite element framework for nonlinear parabolic equations. SIAM J. Sci Comput. 40(3), C283–C304 (2018). https://doi.org/10.1137/16M108985X

    Article  MathSciNet  Google Scholar 

  12. Diening, L., Kreuzer, Ch., Stevenson, R.P.: Instance optimality of the adaptive maximum strategy. Found Comput. Math., 1–36. https://doi.org/10.1007/s10208-014-9236-6 (2015)

  13. Dautray, R., Lions, J. -L.: Mathematical analysis and numerical methods for science and technology. Vol. 5. Springer, Berlin. Evolution problems I. https://doi.org/10.1007/978-3-642-58090-1 (1992)

  14. Diening, L., Storn, J.: A space-time DPG method for the heat equation. Comput. Math. Appl., 105:41–53. https://doi.org/10.1016/j.camwa.2021.11.013(2022)

  15. Diening, L., Storn, J., Tscherpel, T.: On the Sobolev and Lp-stability of the L2-projection. SIAM J. Numer. Anal. 59 (5), 2571–2607 (2021). https://doi.org/10.1137/20M1358013

    Article  MathSciNet  Google Scholar 

  16. Dahmen, W., Stevenson, R. P., Westerdiep, J.: Accuracy controlled data assimilation for parabolic problems (2021) 40 pages Accepted for publication in. Math. Comp. arXiv:2105.05836

  17. Ern, A., Smears, I., Vohralík, M.: Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems. SIAM J. Numer. Anal. 55(6), 2811–2834 (2017). https://doi.org/10.1137/16M1097626

    Article  MathSciNet  Google Scholar 

  18. Führer, T., Karkulik, M.: Space-time least-squares finite elements for parabolic equations. Comput. Math. Appl. 92, 27–36 (2021). https://doi.org/10.1016/j.camwa.2021.03.004

    Article  MathSciNet  Google Scholar 

  19. Gunzburger, M. D., Kunoth, A.: Space-time adaptive wavelet methods for control problems constrained by parabolic evolution equations. SIAM J. Contr. Optim. 49(3), 1150–1170 (2011)

    Article  MathSciNet  Google Scholar 

  20. Griebel, M., Oeltz, D.: A sparse grid space-time discretization scheme for parabolic problems. Computing 81(1), 1–34 (2007)

    Article  MathSciNet  Google Scholar 

  21. Gimperlein, H., Stocek, J.: Space-time adaptive finite elements for nonlocal parabolic variational inequalities. Comput. Methods Appl. Mech Engrg. 352, 137–171 (2019). https://doi.org/10.1016/j.cma.2019.04.019

    Article  MathSciNet  Google Scholar 

  22. Hofer, Ch., Langer, U., Neumüller, M., Schneckenleitner, R.: Parallel and robust preconditioning for space-time isogeometric analysis of parabolic evolution problems. SIAM J. Sci. Comput. 41(3), A1793–A1821 (2019). https://doi.org/10.1137/18M1208794

    Article  MathSciNet  Google Scholar 

  23. Kondratyuk, Y., Stevenson, R.P.: An optimal adaptive finite element method for the Stokes problem. SIAM J. Numer. Anal. 46(2), 747–775 (2008)

    Article  MathSciNet  Google Scholar 

  24. Kestler, S., Stevenson, R.P.: Fast evaluation of system matrices w.r.t. multi-tree collections of tensor product refinable basis functions. J. Comput. Appl. Math. 260, 103–116 (2014)

    Article  MathSciNet  Google Scholar 

  25. Kestler, S., Steih, K., Urban, K.: An efficient space-time adaptive wavelet Galerkin method for time-periodic parabolic partial differential equations. Math. Comp. 85(299), 1309–1333 (2016). https://doi.org/10.1090/mcom/3009

    Article  MathSciNet  Google Scholar 

  26. Larsson, S., Molteni, M.: Numerical solution of parabolic problems based on a weak space-time formulation. Comput. Methods Appl. Math. 17(1), 65–84 (2017). https://doi.org/10.1515/cmam-2016-0027

    Article  MathSciNet  Google Scholar 

  27. Langer, U., Moore, S. E., Neumüller, M.: Space-time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Mech. Engrg. 306, 342–363 (2016). https://doi.org/10.1016/j.cma.2016.03.042

    Article  MathSciNet  Google Scholar 

  28. Langer, U., Schafelner, A.: An optimal adaptive finite element method for Non-autonomous Parabolic Problems with Distributional Sources. Comput. Methods Appl. Math. 20(4), 677–693 (2020). https://doi.org/10.1515/cmam-2020-0042

    Article  MathSciNet  Google Scholar 

  29. Neumüller, M., Smears, I.: Time-parallel iterative solvers for parabolic evolution equations. SIAM J. Sci. Comput. 41(1), C28–C51 (2019). https://doi.org/10.1137/18M1172466

    Article  MathSciNet  Google Scholar 

  30. Olshanskii, M. A., Reusken, A.: On the convergence of a multigrid method for linear reaction-diffusion problems. Computing 65(3), 193–202 (2000). https://doi.org/10.1007/s006070070006

    Article  MathSciNet  Google Scholar 

  31. Pearson, J. W., Wathen, A. J.: A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Algebra Appl. 19(5), 816–829 (2012). https://doi.org/10.1002/nla.814

    Article  MathSciNet  Google Scholar 

  32. Rekatsinas, N., Stevenson, R.P.: An optimal adaptive tensor product wavelet solver of a space-time FOSLS formulation of parabolic evolution problems. Adv. Comput. Math. 45(2), 1031–1066 (2019). https://doi.org/10.1007/s10444-018-9644-2

    Article  MathSciNet  Google Scholar 

  33. Schwab, Ch., Stevenson, R.P.: A space-time adaptive wavelet method for parabolic evolution problems. Math Comp. 78, 1293–1318 (2009). https://doi.org/10.1090/S0025-5718-08-02205-9

    Article  MathSciNet  Google Scholar 

  34. Stevenson, R. P.: The frequency decomposition multi-level method: a robust additive hierarchical basis preconditioner. Math. Comp. 65(215), 983–997 (1996)

    Article  MathSciNet  Google Scholar 

  35. Stevenson, R. P.: The completion of locally refined simplicial partitions created by bisection. Math. Comp. 77, 227–241 (2008)

    Article  MathSciNet  Google Scholar 

  36. Steinbach, O.: Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15(4), 551–566 (2015). https://doi.org/10.1515/cmam-2015-0026

    Article  MathSciNet  Google Scholar 

  37. Stevenson, R. P., van Venetië, R.: Uniform preconditioners for problems of negative order. Math. Comp. 89(322), 645–674 (2020). https://doi.org/10.1090/mcom/3481

    Article  MathSciNet  Google Scholar 

  38. Stevenson, R. P., Westerdiep, J.: Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations. IMA J. Numer. Anal. 41(1), 28–47 (2021). https://doi.org/10.1093/imanum/drz069

    Article  MathSciNet  Google Scholar 

  39. Steinbach, O., Yang, H.: Comparison of algebraic multigrid methods for an adaptive space-time finite-element discretization of the heat equation in 3D and 4D. Numer. Linear Algebra Appl. 25(3), e2143, 17 (2018). https://doi.org/10.1002/nla.2143

    Article  MathSciNet  Google Scholar 

  40. Steinbach, O., Zank, M.: Coercive space-time finite element methods for initial boundary value problems. Electron. Trans. Numer. Anal. 52:154–194. https://doi.org/10.1553/etna_vol52s154 (2020)

  41. van Venetië, R., Westerdiep, J.: A parallel algorithm for solving linear parabolic evolution equations. 33–50, Springer Proc. Math. Stat., 356, Springer, Cham (2021)

  42. van Venetië, R., Westerdiep, J.: Efficient space-time adaptivity for parabolic evolution equations using wavelets in time and finite elements in space. arXiv:2104.08143 (2021)

  43. Wloka, J.: Partielle Differentialgleichungen. B. G. Teubner, Stuttgart. Sobolevräume und Randwertaufgaben (1982)

  44. Wu, J., Zheng, H.: Uniform convergence of multigrid methods for adaptive meshes. Appl. Numer Math. 113, 109–123 (2017). https://doi.org/10.1016/j.apnum.2016.11.005

    Article  MathSciNet  Google Scholar 

  45. Zitelli, J., Muga, I., Demkowicz, L., Gopalakrishnan, J., Pardo, D., Calo, V. M.: A class of discontinuous Petrov-Galerkin methods. Part IV: the optimal test norm and time-harmonic wave propagation in 1D. J. Comput. Phys. 230(7), 2406–2432 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The second and third authors have been supported by the Netherlands Organization for Scientific Research (NWO) under contract. no. 613.001.652

Author information

Authors and Affiliations

  1. Korteweg–de Vries (KdV) Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090, GE, Amsterdam, The Netherlands

    Rob Stevenson, Raymond van Venetië & Jan Westerdiep

Authors
  1. Rob Stevenson
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Raymond van Venetië
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jan Westerdiep
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Rob Stevenson.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Peter Benner

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevenson, R., van Venetië, R. & Westerdiep, J. A wavelet-in-time, finite element-in-space adaptive method for parabolic evolution equations. Adv Comput Math 48, 17 (2022). https://doi.org/10.1007/s10444-022-09930-w

Download citation

  • Received: 12 January 2021

  • Accepted: 01 February 2022

  • Published: 06 April 2022

  • DOI: https://doi.org/10.1007/s10444-022-09930-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Space-time variational formulations of parabolic PDEs
  • Quasi-best approximations
  • Least squares methods
  • Adaptive approximation
  • Tensor product approximation
  • Optimal preconditioners

Mathematics Subject Classification (2010)

  • 35K20
  • 65F08
  • 65M12
  • 65M60
  • 65T60
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature