Skip to main content
Log in

Error analysis of fully discrete mixed finite element data assimilation schemes for the Navier-Stokes equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider fully discrete approximations with inf-sup stable mixed finite element methods in space to approximate the Navier-Stokes equations. A continuous downscaling data assimilation algorithm is analyzed in which measurements on a coarse scale are given represented by different types of interpolation operators. For the time discretization an implicit Euler scheme, an implicit and a semi-implicit second-order backward differentiation formula are considered. Uniform-in-time error estimates are obtained for all the methods for the error between the fully discrete approximation and the reference solution corresponding to the measurements. For the spatial discretization we consider both the Galerkin method and the Galerkin method with grad-div stabilization. For the last scheme error bounds in which the constants do not depend on inverse powers of the viscosity are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam), 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Agmon, S.: Lectures on elliptic boundary value problems. AMS Chelsea Publishing, Providence, RI, 2010. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr., Revised edition of the 1965 original

  3. Altaf, M.U., Titi, E.S., Gebrael, T., Knio, O.M., Zhao, L., McCabe, M.F., Hoteit, I.: Downscaling the 2d bénard convection equations using continuous data assimilation. Comput. Geosci. 21(3), 393–410 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Arndt, D., Dallmann, H., Lube, G.: Local projection FEM stabilization for the time-dependent incompressible Navier-Stokes problem. Numer. Methods Partial Differential Equations 31(4), 1224–1250 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Asch, M., Bocquet, M., Nodet, M.: Data Assimilation, volume 11 of Fundamentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2016). Methods, algorithms, and applications

    MATH  Google Scholar 

  6. Ayuso, B., García-archilla, B., Novo, J.: The postprocessed mixed finite-element method for the Navier-Stokes equations. SIAM J. Numer. Anal. 43(3), 1091–1111 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Azouani, A., Olson, E., Titi, E.S.: Continuous data assimilation using general interpolant observables. J. Nonlinear Sci. 24(2), 277–304 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Bernardi, C., Girault, V.: A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35(5), 1893–1916 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Brezzi, F., Falk, R.S.: Stability of higher-order hood-Taylor methods. SIAM J. Numer. Anal. 28(3), 581–590 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics. Springer, New York (1991)

    MATH  Google Scholar 

  11. Chen, H.: Pointwise error estimates for finite element solutions of the Stokes problem. SIAM J. Numer. Anal. 44(1), 1–28 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Constantin, P., Foias, C.: Navier-Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988)

    Google Scholar 

  13. Daley, R.: Navier-Stokes Equations. Cambridge Atmospheric and Space Science Series. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  14. Dallmann, H., Arndt, D., Lube, G.: Local projection stabilization for the Oseen problem. IMA J. Numer. Anal. 36(2), 796–823 (2016)

    MathSciNet  MATH  Google Scholar 

  15. de Frutos, J., García-archilla, B., John, V., Novo, J.: Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements. J. Sci. Comput. 66(3), 991–1024 (2016)

    MathSciNet  MATH  Google Scholar 

  16. de Frutos, J., García-archilla, B., John, V., Novo, J.: Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements. Adv. Comput. Math. 44(1), 195–225 (2018)

    MathSciNet  MATH  Google Scholar 

  17. de Frutos, J., García-archilla, B., Novo, J.: Error analysis of projection methods for non inf-sup stable mixed finite elements: the Navier-Stokes equations. J. Sci. Comput. 74(1), 426–455 (2018)

    MathSciNet  MATH  Google Scholar 

  18. de Frutos, J., John, V., Novo, J.: Projection methods for incompressible flow problems with WENO finite difference schemes. J. Comput. Phys. 309, 368–386 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Farhat, A., Johnston, H., Jolly, M., Titi, E.S.: Assimilation of Nearly Turbulent Rayleigh–Bénard Flow through Vorticity Or Local Circulation Measurements: a Computational Study. Journal of Scientific Computing (2018)

  20. Farhat, A., Jolly, M.S., Titi, E.S.: Continuous data assimilation for the 2D bénard convection through velocity measurements alone. Phys. D 303, 59–66 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Farhat, A., Lunasin, E.S., Titi, E.S.: On the charney conjecture of data assimilation employing temperature measurements alone: the paradigm of 3d planetary geostrophic model. Math. Clim. Weather Forecast. 2, 59–66 (2016)

    MATH  Google Scholar 

  22. Franca, L.P., Hughes, T.J.R.: To classes of mixed finite element methods. Comput. Methods Appl. Mech. Engrg. 69(1), 89–129 (1988)

    MathSciNet  MATH  Google Scholar 

  23. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, volume 38 of Springer Tracts in Natural Philosophy. Springer, New York (1994). Linearized steady problems

    Google Scholar 

  24. García-Archilla, B., Novo, J., Titi, E.S.: Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds. SIAM J. Numer. Anal. 35(3), 941–972 (1998)

    MathSciNet  MATH  Google Scholar 

  25. García-Archilla, B., Novo, J., Titi, E.S.: An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations. Math. Comp. 68(227), 893–911 (1999)

    MathSciNet  MATH  Google Scholar 

  26. García-Archilla, B., Novo, J., Titi, E.S.: Uniform in time error estimates for a finite element method applied to a downscaling data assimilation algorithm for the Navier-Stokes equations, arXiv:1807.08735 (2018)

  27. Gesho, M., Olson, E., Titi, E.S.: A computational study of a data assimilation algorithm for the two-dimensional navier-Stokes equations. Commun. Comput. Phys. 19(4), 1094–1110 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Girault, V., Lions, J.-l.: Two-grid finite-element schemes for the transient navier-Stokes problem. m2AN Math. Model. Numer. Anal. 35(5), 945–980 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Volume 14 of Springer Series in Computational Mathematics. Springer, Berlin (2010). Stiff and differential-algebraic problems, Second revised edition, paperback

    MATH  Google Scholar 

  30. Hayden, K., Olson, E., Titi E.S.: Discrete data assimilation in the Lorenz and 2D, Navier-Stokes equations. Phys. D 240(18), 1416–1425 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Heywood, J.G., Rannacher, R: Finite element approximation of the nonstationary Navier-Stokes problem. III. Smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25(3), 489–512 (1988)

    MathSciNet  MATH  Google Scholar 

  32. Ibdah, H.A., Mondaini, C.F., Titi, E.S.: Uniform in time error estimates for fully discrete numerical schemes of a data assimilation algorithm. arXiv:1805.01595v1 (2018)

  33. Jenkins, E.W., John, V., Linke, A., Rebholz, L.G.: On the parameter choice in grad-div stabilization for the Stokes equations. Adv. Comput. Math. 40(2), 491–516 (2014)

    MathSciNet  MATH  Google Scholar 

  34. John, V.: Finite Element Methods for Incompressible Flow Problems, Volume 51 of Springer Series in Computational Mathematics. Springer, Cham (2016)

    Google Scholar 

  35. John, V., Kindl, A.: Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput. Methods Appl. Mech. Engrg. 199(13-16), 841–852 (2010)

    MathSciNet  MATH  Google Scholar 

  36. John, V., Liakos, A.: Time-dependent flow across a step: the slip with friction boundary condition. Internat. J. Numer. Methods Fluids 50(6), 713–731 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Kalnay, E.: Atmospheric modeling, data assimilation and predictability. Cambridge University Press (2002)

  38. Larios, A., Rebholz, L.G., Zerfas, C.: Global in time stability and accuracy of IMEX-FEM data assimilation schemes for navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 345, 1077–1093 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Law, K., Stuart, A., Zygalakis, K.: Data Assimilation, Volume 62 of Texts in Applied Mathematics. Springer, Cham (2015). A mathematical introduction

    Google Scholar 

  40. Lunasin, E., Titi, E.S.: Finite determining parameters feedback control for distributed nonlinear dissipative systems—a computational study. Evol. Equ. Control Theory 6(4), 535–557 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Mondaini, C.F., Titi, E.S.: Uniform-in-time error estimates for the postprocessing Galerkin method applied to a data assimilation algorithm. SIAM J. Numer. Anal. 56(1), 78–110 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Olshanskii, M.A.: A low order Galerkin finite element method for the navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods. Comput. Methods Appl. Mech. Engrg. 191(47-48), 5515–5536 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Olshanskii, M.A., Reusken, A.: Grad-div stabilization for Stokes equations. Math. Comp. 73(248), 1699–1718 (2004)

    MathSciNet  MATH  Google Scholar 

  44. Rebholz, L.G., Zerfas, C.: Simple and efficient continuous data assimilation of evolution equations via algebraic nudging. arXiv:1810.03512 (2018)

  45. Reich, S., Cotter, C.: Probabilistic Forecasting and Bayesian Data Assimilation. Cambridge University Press, New York (2015)

    MATH  Google Scholar 

  46. Röhe, L., Lube, G.: Analysis of a variational multiscale method for large-eddy simulation and its application to homogeneous isotropic turbulence. Comput. Methods Appl. Mech. Engrg. 199(37-40), 2331–2342 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Schatz, A.H.: Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I. Global estimates. Math Comp. 67(223), 877–899 (1998)

    MathSciNet  MATH  Google Scholar 

  48. Schatz, A.H., Wahlbin, L.B.: On the quasi-optimality in \(l_{\infty }\) of the \(\dot h^{1}\)-projection into finite element spaces. Math. Comp. 38(157), 1–22 (1982)

    MathSciNet  MATH  Google Scholar 

  49. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)

    MathSciNet  MATH  Google Scholar 

  50. Taylor, C., Hood, P.: A numerical solution of the navier-Stokes equations using the finite element technique. Internat. J. Comput. Fluids 1(1), 73–100 (1973)

    MathSciNet  MATH  Google Scholar 

  51. Temam, R.: Navier-Stokes equations, volume 2 of Studies in Mathematics and its Applications, 3rd Edn. North-Holland Publishing Co., Amsterdam (1984). Theory and numerical analysis, with an appendix by F. Thomasset

    Google Scholar 

Download references

Funding

Research is supported by Spanish MINCINYU under grant PGC2018-096265-B-I00 and PID2019-104141GB-I00. Research is also supported by Spanish MINECO under grant MTM2016-78995-P (AEI/FEDER, UE) and PID2019-104141GB-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Novo.

Additional information

Communicated by: Zydrunas Gimbutas

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Archilla, B., Novo, J. Error analysis of fully discrete mixed finite element data assimilation schemes for the Navier-Stokes equations. Adv Comput Math 46, 61 (2020). https://doi.org/10.1007/s10444-020-09806-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09806-x

Keywords

Mathematics Subject Classification (2010)

Navigation