Abstract
This work is concerned with adaptive hybridizable discontinuous Galerkin methods of nonstationary convection diffusion problems. We address first the spatially semidiscrete case and then move to the fully discrete scheme by introducing a backward Euler discretization in time. More specifically, the computable a posteriori error estimator for the time-dependent problem is obtained by using the idea of elliptic reconstruction and conforming-nonconforming decomposition. In view of the method that has been employed in the time-dependent problem, we also obtain a computable a posteriori error estimator for the fully discrete scheme. Finally, two examples show the performance of the obtained a posteriori error estimators.
Similar content being viewed by others
References
Adams, R.: Sobolev Spaces. Academic Press, New York (1975)
Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience Series in Pure and Applied Mathematics, New York (2000)
Araya, R., Behrens, E., Rodríguez, R.: An adaptive stabilized finite element scheme for the advection-reaction-diffusion equation. Appl. Numer. Math. 54, 491–503 (2005)
Alaoui, L.E., Ern, A., Burman, E.: A priori and a posteriori error analysis of nonconforming finite elements with face penalty for advection-diffusion equations. SIAM J. Numer. Anal. 27, 151–171 (2007)
Ayuso, B., Marini, D.: Discontinuous Galerkin methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 47, 1391–1420 (2009)
Brezzi, F., Hughes, T.J.R., Marini, L.D., Russo, A., Süli, E.: A priori error analysis of residual-free bubbles for advection-diffusion problems. SIAM J. Numer. Anal. 44, 1933–1948 (1999)
Brezzi, F., Marini, L.D., Süli, E.: Residual-free bubbles for advection-diffusion problems: the general error analysis. Numer. Math. 85, 31–47 (2000)
Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 137–199 (2001)
Becker, R., Hansbo, P., Larson, M.: Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Engrg. 192, 723–733 (2003)
Becker, R., Vexler, B.: Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106, 349–367 (2007)
Bergam, A., Bernardi, C., Mghazli, Z.: A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74, 1117–1138 (2005)
Berrone, S., Canuto, C.: Multilevel a posteriori error analysis for reaction-convection-diffusion problems. Appl. Numer. Math. 50, 371–394 (2004)
Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations. Math. Comp. 76, 1119–1140 (2007)
Broersen, D., Stevenson, R.: A robust Petrov-Galerkin discretisation of convection-diffusion equations. Comput. Math. Appl. 68, 1605–1618 (2014)
Broersen, D., Stevenson, R.: A Petrov-Galerkin discretisation with optimal test space of a mild -weak formulation of convection-diffusion equations in mixed form. IMA J. Numer. Math. 35, 39–73 (2015)
Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comp. 66, 465–476 (1997)
Cangiani, A., Georgoulis, E.H., Metcalfe, S.: Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems. IMA J. Numer. Anal. 34, 1578–1597 (2014)
Chen, Z., Feng, J.: An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp. 73, 1167–1193 (2004)
Chan, J., Heuer, N., Bui-Thanh, T., Demkowicz, L.: A robust DPG method for convection-domainated diffusion problems II: adjoint boundary conditions and mesh-dependent test norms. Comput. Math. Appl. 67, 771–795 (2014)
Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection-diffusion equations Part I: general nonconforming meshes. IMA J. Numer. Anal. 32, 1267–1293 (2012)
Cockburn, B., Dong, B., Guzmán, J., Restelli, M., Sacco, R.: A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. J. Sci. Comput. 31, 3827–3846 (2009)
Cockburn, B., Zhang, W.: A posteriori error estimates for HDG methods. J. Sci. Comput. 51, 582–607 (2012)
Cockburn, B., Zhang, W.: A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51, 676–693 (2013)
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)
Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comp. 79, 1351–1367 (2010)
Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection-diffusion equations. IMA J. Numer. Anal. 36, 437–462 (2016)
Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)
Eriksson, K., Johnson, C.: Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems. Math. Comp. 60, 167–188 (1993)
Ern, A., Vohralík, M.: A posteriori error estimation based on potential and flux reconstruction for the heat equation. SIAM. J. Numer. Anal. 48, 198–223 (2010)
Ern, A., Proft, J.: A posteriori discontinuous Galerkin error estimates for transient convection-diffusion equations. Appl. Math. Lett. 18, 833–841 (2005)
Fu, G., Qiu, W., Zhang, W.: An analysis of HDG methods for convection-dominated diffusion problems. ESAIM: M2AN 49, 225–256 (2015)
Guermond, J.-L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. Modél. Math. Anal. Numér. 36, 1293–1316 (1999)
Houston. P., Süli, E.: Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems. Math. Comp. 70, 77–106 (2001)
Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002)
Johnson, C.: Numerical Solution of Partial Differential Equations by Finite Element Method. Cambridge University Press, Cambridge (1987)
Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation for a second order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)
Karakashian, O.A., Pascal, F.: Convergence of adaptive discontinuous Galerkin approximations of second- order elliptic problems. SIAM J. Numer. Anal. 45, 641–665 (2007)
Lakkis, O., Makridakis, C.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comp. 75, 1627–1658 (2006)
Nicaise, S., Soualem, N.: A posteriori error estimates for a nonconforming finite element discretization of the heat equation. M2AN Math. Numer. Anal. 39, 319–348 (2005)
Picasso, M.: Adaptive finite elements for a linear parabilic problem. Comput. Methods Appl. Mech. Engrg. 167, 223–237 (1998)
Qiu, W., Shi, K.: An HDG method for convection diffusion equations. J. Sci. Comput. 66, 346–357 (2016)
Roos, H.-G., Stynes, M., Tobiska, L.: Convection-Diffusion-Reaction and Flow Problems. Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, 2nd edn., vol. 24, p xiv+ 604. Springer, Berlin (2008)
Georgoulis, E.H., Lakkis, O., Virtanen, J.M.: A posteriori error control for discontinuous Galerkin methods for parabolic problems. SIAM J. Numer. Anal. 49, 427–458 (2011)
Sangalli, G.: Robust a posteriori error estimator for advection-diffusion-reaction problems. Math. Comp. 77, 41–70 (2008)
Schötzau, D., Zhu, L.: A robust a posterior error estimator for discontinuous Galerkin methods for convection diffusion equations. Appl. Numer. Math. 59, 2236–2255 (2009)
Tobiska, L., Verfürth, R.: Robust a posteriori error estimates for stabilized finite element methods. IMA J. Numer. Anal. 35, 1652–1671 (2015)
Vohralík, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations. SIAM J. Numer. Anal. 45, 1570–1599 (2007)
Verfürth, R.: A Review of Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996)
Verfürth, R.: A posteriori error estimators for convection-diffusion equations. Numer. Math. 80, 641–663 (1998)
Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40, 195–212 (2003)
Verfürth, R.: Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43, 225–256 (2005)
Verfürth, R.: Robust a posteriori error estimates for nonstationary convection-diffusion equations. SIAM J. Numer. Anal. 43, 1783–1802 (2005)
Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013)
Zhu, L., Schötzau, D.: A robust a posteriori error estimate for hp-adaptive DG methods for convection-diffusion equations. IMA J. Numer. Anal. 31, 971–1005 (2011)
Funding
This work is supported by State Key Program of Natural Science Foundation of China (11931003) and National Natural Science Foundation of China (41974133, 11671157).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Ilaria Perugia
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Leng, H., Chen, Y. Adaptive hybridizable discontinuous Galerkin methods for nonstationary convection diffusion problems. Adv Comput Math 46, 50 (2020). https://doi.org/10.1007/s10444-020-09795-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-020-09795-x