Skip to main content
Log in

Adaptive hybridizable discontinuous Galerkin methods for nonstationary convection diffusion problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This work is concerned with adaptive hybridizable discontinuous Galerkin methods of nonstationary convection diffusion problems. We address first the spatially semidiscrete case and then move to the fully discrete scheme by introducing a backward Euler discretization in time. More specifically, the computable a posteriori error estimator for the time-dependent problem is obtained by using the idea of elliptic reconstruction and conforming-nonconforming decomposition. In view of the method that has been employed in the time-dependent problem, we also obtain a computable a posteriori error estimator for the fully discrete scheme. Finally, two examples show the performance of the obtained a posteriori error estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience Series in Pure and Applied Mathematics, New York (2000)

    MATH  Google Scholar 

  3. Araya, R., Behrens, E., Rodríguez, R.: An adaptive stabilized finite element scheme for the advection-reaction-diffusion equation. Appl. Numer. Math. 54, 491–503 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Alaoui, L.E., Ern, A., Burman, E.: A priori and a posteriori error analysis of nonconforming finite elements with face penalty for advection-diffusion equations. SIAM J. Numer. Anal. 27, 151–171 (2007)

    MATH  Google Scholar 

  5. Ayuso, B., Marini, D.: Discontinuous Galerkin methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 47, 1391–1420 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Hughes, T.J.R., Marini, L.D., Russo, A., Süli, E.: A priori error analysis of residual-free bubbles for advection-diffusion problems. SIAM J. Numer. Anal. 44, 1933–1948 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Marini, L.D., Süli, E.: Residual-free bubbles for advection-diffusion problems: the general error analysis. Numer. Math. 85, 31–47 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 137–199 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Becker, R., Hansbo, P., Larson, M.: Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Engrg. 192, 723–733 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Becker, R., Vexler, B.: Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106, 349–367 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Bergam, A., Bernardi, C., Mghazli, Z.: A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74, 1117–1138 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Berrone, S., Canuto, C.: Multilevel a posteriori error analysis for reaction-convection-diffusion problems. Appl. Numer. Math. 50, 371–394 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations. Math. Comp. 76, 1119–1140 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Broersen, D., Stevenson, R.: A robust Petrov-Galerkin discretisation of convection-diffusion equations. Comput. Math. Appl. 68, 1605–1618 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Broersen, D., Stevenson, R.: A Petrov-Galerkin discretisation with optimal test space of a mild -weak formulation of convection-diffusion equations in mixed form. IMA J. Numer. Math. 35, 39–73 (2015)

    MATH  Google Scholar 

  16. Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comp. 66, 465–476 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Cangiani, A., Georgoulis, E.H., Metcalfe, S.: Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems. IMA J. Numer. Anal. 34, 1578–1597 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Chen, Z., Feng, J.: An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp. 73, 1167–1193 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Chan, J., Heuer, N., Bui-Thanh, T., Demkowicz, L.: A robust DPG method for convection-domainated diffusion problems II: adjoint boundary conditions and mesh-dependent test norms. Comput. Math. Appl. 67, 771–795 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection-diffusion equations Part I: general nonconforming meshes. IMA J. Numer. Anal. 32, 1267–1293 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Cockburn, B., Dong, B., Guzmán, J., Restelli, M., Sacco, R.: A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. J. Sci. Comput. 31, 3827–3846 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Cockburn, B., Zhang, W.: A posteriori error estimates for HDG methods. J. Sci. Comput. 51, 582–607 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Cockburn, B., Zhang, W.: A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51, 676–693 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comp. 79, 1351–1367 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection-diffusion equations. IMA J. Numer. Anal. 36, 437–462 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)

    MathSciNet  MATH  Google Scholar 

  28. Eriksson, K., Johnson, C.: Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems. Math. Comp. 60, 167–188 (1993)

    MathSciNet  MATH  Google Scholar 

  29. Ern, A., Vohralík, M.: A posteriori error estimation based on potential and flux reconstruction for the heat equation. SIAM. J. Numer. Anal. 48, 198–223 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Ern, A., Proft, J.: A posteriori discontinuous Galerkin error estimates for transient convection-diffusion equations. Appl. Math. Lett. 18, 833–841 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Fu, G., Qiu, W., Zhang, W.: An analysis of HDG methods for convection-dominated diffusion problems. ESAIM: M2AN 49, 225–256 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Guermond, J.-L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. Modél. Math. Anal. Numér. 36, 1293–1316 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Houston. P., Süli, E.: Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems. Math. Comp. 70, 77–106 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002)

    MathSciNet  MATH  Google Scholar 

  35. Johnson, C.: Numerical Solution of Partial Differential Equations by Finite Element Method. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  36. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation for a second order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Karakashian, O.A., Pascal, F.: Convergence of adaptive discontinuous Galerkin approximations of second- order elliptic problems. SIAM J. Numer. Anal. 45, 641–665 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Lakkis, O., Makridakis, C.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comp. 75, 1627–1658 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Nicaise, S., Soualem, N.: A posteriori error estimates for a nonconforming finite element discretization of the heat equation. M2AN Math. Numer. Anal. 39, 319–348 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Picasso, M.: Adaptive finite elements for a linear parabilic problem. Comput. Methods Appl. Mech. Engrg. 167, 223–237 (1998)

    MathSciNet  MATH  Google Scholar 

  41. Qiu, W., Shi, K.: An HDG method for convection diffusion equations. J. Sci. Comput. 66, 346–357 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Roos, H.-G., Stynes, M., Tobiska, L.: Convection-Diffusion-Reaction and Flow Problems. Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, 2nd edn., vol. 24, p xiv+ 604. Springer, Berlin (2008)

  43. Georgoulis, E.H., Lakkis, O., Virtanen, J.M.: A posteriori error control for discontinuous Galerkin methods for parabolic problems. SIAM J. Numer. Anal. 49, 427–458 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Sangalli, G.: Robust a posteriori error estimator for advection-diffusion-reaction problems. Math. Comp. 77, 41–70 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Schötzau, D., Zhu, L.: A robust a posterior error estimator for discontinuous Galerkin methods for convection diffusion equations. Appl. Numer. Math. 59, 2236–2255 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Tobiska, L., Verfürth, R.: Robust a posteriori error estimates for stabilized finite element methods. IMA J. Numer. Anal. 35, 1652–1671 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Vohralík, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations. SIAM J. Numer. Anal. 45, 1570–1599 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Verfürth, R.: A Review of Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996)

    MATH  Google Scholar 

  49. Verfürth, R.: A posteriori error estimators for convection-diffusion equations. Numer. Math. 80, 641–663 (1998)

    MathSciNet  MATH  Google Scholar 

  50. Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40, 195–212 (2003)

    MathSciNet  MATH  Google Scholar 

  51. Verfürth, R.: Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43, 225–256 (2005)

    MathSciNet  MATH  Google Scholar 

  52. Verfürth, R.: Robust a posteriori error estimates for nonstationary convection-diffusion equations. SIAM J. Numer. Anal. 43, 1783–1802 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  54. Zhu, L., Schötzau, D.: A robust a posteriori error estimate for hp-adaptive DG methods for convection-diffusion equations. IMA J. Numer. Anal. 31, 971–1005 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by State Key Program of Natural Science Foundation of China (11931003) and National Natural Science Foundation of China (41974133, 11671157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

Communicated by: Ilaria Perugia

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, H., Chen, Y. Adaptive hybridizable discontinuous Galerkin methods for nonstationary convection diffusion problems. Adv Comput Math 46, 50 (2020). https://doi.org/10.1007/s10444-020-09795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09795-x

Keywords

Mathematics Subject Classification (2010)

Navigation