Abstract
In this paper, we investigate infinite horizon optimal control problems for parametrized partial differential equations. We are interested in feedback control via dynamic programming equations which is well-known to suffer from the curse of dimensionality. Thus, we apply parametric model order reduction techniques to construct low-dimensional subspaces with suitable information on the control problem, where the dynamic programming equations can be approximated. To guarantee a low number of basis functions, we combine recent basis generation methods and parameter partitioning techniques. Furthermore, we present a novel technique to construct non-uniform grids in the reduced domain, which is based on statistical information. Finally, we discuss numerical examples to illustrate the effectiveness of the proposed methods for PDEs in two space dimensions.
This is a preview of subscription content, log in to check access.
References
- 1.
Alla, A., Falcone, M., Kalise, D.: An efficient policy iteration algorithm for dynamic programming equations. SIAM J. Sci. Comput. 37, A181–A200 (2015). https://doi.org/10.1137/130932284
- 2.
Alla, A., Falcone, M., Kalise, D.: A HJB-POD feedback synthesis approach for the wave equation. Bulletin of the Brazilian Mathematical Society New Series 47, 51–64 (2016). https://doi.org/10.1007/s00574-016-0121-6
- 3.
Alla, A., Falcone, M., Saluzzi, L.: An efficient DP algorithm on a tree-structure for finite horizon optimal control problems. SIAM J. Sci. Comput. 41, A2384–A2406 (2019). https://doi.org/10.1137/18M1203900
- 4.
Alla, A., Falcone, M., Volkwein, S.: Error analysis for POD approximations of infinite horizon problems via the dynamic programming approach. SIAM J. Control. Optim. 55, 3091–3115 (2017). https://doi.org/10.1137/15M1039596
- 5.
Alla, A., Schmidt, A., Haasdonk, B.: Model order reduction approaches for infinite horizon optimal control problems via the HJB equation. In: Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.) Model Reduction of Parametrized Systems, pp 333–347. Springer International Publishing, Cham (2017), https://doi.org/10.1007/978-3-319-58786-8_21
- 6.
Antoulas, A.: Approximation of large–scale dynamical systems. SIAM Publications, Philadelphia (2005). https://doi.org/10.1137/1.9780898718713
- 7.
Atwell, J., King, B.: Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math. Comput. Model. 33, 1–19 (2001). https://doi.org/10.1016/s0895-7177(00)00225-9
- 8.
Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997). https://doi.org/10.1007/978-0-8176-4755-1
- 9.
Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus de l’Académie des Sciences Series I 339, 667–672 (2004). https://doi.org/10.1016/j.crma.2004.08.006
- 10.
Bellman, R.: Dynamic Programming, 1st edn. Princeton University Press, Princeton (1957)
- 11.
Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015). https://doi.org/10.1137/130932715
- 12.
Benner, P., Heiland, J.: LQG-balanced truncation low-order controller for stabilization of laminar flows. In: King, R. (ed.) Active Flow and Combustion Control 2014, vol. 127, pp 365–379. Springer International Publishing (2015)
- 13.
Bokanowski, O., Maroso, S., Zidani, H.: Some convergence results for Howard’s algorithm. SIAM J. Numer. Anal. 47, 3001–3026 (2009). https://doi.org/10.1137/08073041X
- 14.
Breiten, T., Kunisch, K.: Riccati-based feedback control of the monodomain equations with the Fitzhugh–Nagumo model. SIAM J. Control. Optim. 52, 4057–4081 (2014). https://doi.org/10.1137/140964552
- 15.
Dedé, L.: Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems. SIAM J. Sci Comput. 32, 997–1019 (2010). https://doi.org/10.1137/090760453
- 16.
Eftang, J. L., Patera, A. T., Rønquist, E. M.: An hp certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32, 3170–3200 (2010). https://doi.org/10.1137/090780122
- 17.
Falcone, M.: A numerical approach to the infinite horizon problem of deterministic control theory. Appl. Math. Optim. 15, 1–13 (1987). https://doi.org/10.1007/BF01442644
- 18.
Falcone, M., Ferretti, R.: Semi-lagrangian approximation schemes for linear and Hamilton-Jacobi equations, Society for industrial and applied mathematics. https://doi.org/10.1137/1.9781611973051 (2013)
- 19.
Garcke, J., Kröner, A.: Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids. J. Sci. Comput. 70, 1–28 (2017). https://doi.org/10.1007/s10915-016-0240-7
- 20.
Grüne, L., Pannek, J.: Nonlinear model predictive control. In: Nonlinear Model Predictive Control, pp 43–66. Springer, London (2011), https://doi.org/10.1007/978-0-85729-501-9_3
- 21.
Gubisch, M., Volkwein, S.: POD for linear-quadratic optimal control. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia (2017)
- 22.
Haasdonk, B.: Convergence rates of the POD–Greedy method. ESAIM: Mathematical modelling and numerical Analysis 47, 859–873 (2013). https://doi.org/10.1051/m2an/2012045
- 23.
Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple basis generation approach for parametrized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. Syst. 17, 423–442 (2011). https://doi.org/10.1080/13873954.2011.547674
- 24.
Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling Theory and Applications. Springer, Berlin (2009). https://doi.org/10.1007/978-1-4020-8839-1
- 25.
Howard, R.A.: Dynamic Programming and Markov processes. MIT Press, Cambridge (1960)
- 26.
Junge, O., Schreiber, A.: Dynamic programming using radial basis functions. Discrete and Continuous Dynamical Systems 35, 4439–4453 (2015). https://doi.org/10.3934/dcds.2015.35.4439
- 27.
Kalise, D., Kröner, A.: Reduced-order minimum time control of advection-reaction-diffusion systems via dynamic programming. In: 21st International Symposium on Mathematical Theory of Networks and Systems, Groningen, Netherlands, pp. 1196–1202 (2014). https://hal.archives-ouvertes.fr/hal-01089887
- 28.
Kalise, D., Kunisch, K.: Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs. SIAM J. Sci. Comput. 40, A629–A652 (2018). https://doi.org/10.1137/17M1116635
- 29.
Kärcher, M., Grepl, M.: A posteriori error estimation for reduced order solutions of parametrized parabolic optimal control problems. ESAIM: Mathematical Modelling and Numerical Analysis 48, 1615–1638 (2014). https://doi.org/10.1051/m2an/2014012
- 30.
Kunisch, K., Volkwein, S., Xie, L.: HJB-POD based feedback design for the optimal control of evolution problems. SIAM Journal on Applied Dynamical Systems 3, 701–722 (2004). http://epubs.siam.org/doi/abs/10.1137/030600485
- 31.
Kunisch, K., Xie, L.: POD-based feedback control of the Burgers equation by solving the evolutionary HJB equation. Computers & Mathematics with Applications 49, 1113–1126 (2005). https://doi.org/10.1016/j.camwa.2004.07.022
- 32.
Patera, A., Rozza, G.: Reduced basis approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations, To appear in (tentative) MIT Pappalardo Graduate Monographs in Mechanical Engineering, MIT. http://augustine.mit.edu/methodology/methodology_book.htm (2007)
- 33.
Ravindran, S.S.: A reduced order approach for optimal control of fluids using proper orthogonal decomposition. Int. J. Numer. Methods Fluids 34, 435–448 (2000). https://doi.org/10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W
- 34.
Santos, M.S., Rust, J.: Convergence properties of policy iteration. SIAM J. Control. Optim. 42, 2094–2115 (2004). https://doi.org/10.1137/S0363012902399824
- 35.
Schmidt, A., Haasdonk, B.: Data-driven surrogates of value functions and applications to feedback control for dynamical systems. IFAC-PapersOnLine 51, 307–312 (2018). https://doi.org/10.1016/j.ifacol.2018.03.053
- 36.
Schmidt, A., Haasdonk, B.: Reduced basis approximation of large scale parametric algebraic Riccati equations. ESAIM: Control Optimisation and Calculus of Variations 24, 129–151 (2018). https://doi.org/10.1051/cocv/2017011
- 37.
Simoncini, V.: Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM Journal on Matrix Analysis and Applications 37, 1655–1674 (2016). https://doi.org/10.1137/16m1059382
- 38.
Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications, vol. 112 of Mathematical Modelling: Theory and Applications. American Mathematical Society, Providence (2010)
- 39.
Tröltzsch, F., Volkwein, S.: POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44, 83–115 (2009). https://doi.org/10.1007/s10589-008-9224-3
Acknowledgments
The authors would like to thank Max Gunzburger for several fruitful discussions on the subject and valuable comments for improvement of the presentation.
Funding
The first author was supported by US Department of Energy grant number DE-SC0009324. The second and third authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/2) at the University of Stuttgart.
Author information
Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: Model Reduction of Parametrized Systems
Guest Editors: Anthony Nouy, Peter Benner, Mario Ohlberger, Gianluigi Rozza, Karsten Urban and Karen Willcox
Communicated by: Anthony Nouy
Rights and permissions
About this article
Cite this article
Alla, A., Haasdonk, B. & Schmidt, A. Feedback control of parametrized PDEs via model order reduction and dynamic programming principle. Adv Comput Math 46, 9 (2020). https://doi.org/10.1007/s10444-020-09744-8
Received:
Accepted:
Published:
Keywords
- Dynamic programming principle
- Semi-Lagrangian schemes
- Hamilton-Jacobi-Bellman equations
- Optimal control
- Model reduction
- Reduced basis method
Mathematics Subject Classification (2010)
- 49L20
- 49J20
- 65N99
- 78M34