Skip to main content
Log in

On the convergence of data assimilation for the one-dimensional shallow water equations with sparse observations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The shallow water equations (SWE) are a widely used model for the propagation of surface waves on the oceans. We consider the problem of optimally determining the initial conditions for the one-dimensional SWE in an unbounded domain from a small set of observations of the sea surface height. In the linear case, we prove a theorem that gives sufficient conditions for convergence to the true initial conditions. At least two observation points must be used and at least one pair of observation points must be spaced more closely than half the effective minimum wavelength of the energy spectrum of the initial conditions. This result also applies to the linear wave equation. Our analysis is confirmed by numerical experiments for both the linear and nonlinear SWE data assimilation problems. These results show that convergence rates improve with increasing numbers of observation points and that at least three observation points are required for practically useful results. Better results are obtained for the nonlinear equations provided more than two observation points are used. This paper is a first step towards understanding the conditions for observability of the SWE for small numbers of observation points in more physically realistic settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lacasta, A., Morales-Hernández, M., Burguete, J., Brufau, P., García-Navarro, P.: Calibration of the 1d shallow water equations: a comparison of Monte Carlo and gradient-based optimization methods. J Hydroinformatics 19(2), 282–298 (2003)

    Article  Google Scholar 

  2. Bélanger, E., Vincent, A., Fortin, A.: Data assimilation (4d-VAR) for shallow-water flow: the case of the Chicoutimi river. Vis. Geosci. 8(1), 1–17 (2003)

    Article  Google Scholar 

  3. Berger, M.S.: Nonlinearity and functional analysis. Academic Press (1977)

  4. Cobelli, P.J., Petitjeans, P., Maurel, A., Pagneux, V.: Determination of the bottom deformation from space- and time-resolved water wave measurements. J. Fluid Mech. 835, 301–326 (2017)

    Article  MathSciNet  Google Scholar 

  5. Coron, J.M.: Control and nonlinearity. American Mathematical Society (2007)

  6. Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluver, Dordrecht (1996)

    Book  Google Scholar 

  7. Gunzburger, M.D.: Perspectives in flow control and optimization. SIAM (2003)

  8. Guo, L., Wang, Z.: Exact boundary observability for nonautonomous quasilinear wave equations. J. Math. Anal. Appl. 364(1), 41–50 (2010)

    Article  MathSciNet  Google Scholar 

  9. Ide, K., Courtier, P., Ghil, M., Lorenc, A.: Unified notation for data assimilation: operational, sequential and variational. J. Meteorol. Soc. Jpn. 75, 181–189 (1997)

    Article  Google Scholar 

  10. John, F.: Partial differential equations. Springer (1982)

  11. Kalnay, E.: Atmospheric modeling, data assimilation and predictability. Cambridge University Press (2003)

  12. Kevlahan, N.K.R., Dubos, T., Aechtner, M.: Adaptive wavelet simulation of global ocean dynamics using a new Brinkman volume penalization. Geosci. Model Dev. 8(12), 3891–3909 (2015)

    Article  Google Scholar 

  13. Khan, R.: A Data assimilation scheme for the one-dimensional shallow e quations, Master’s thesis, McMaster University (2016)

  14. Li, T., Li, D.: Exact boundary observability for 1-D quasilinear wave equations. Math. Method Appl. Sci. 29(13), 1543–1553 (2006)

    Article  MathSciNet  Google Scholar 

  15. Maeda, T., Obara, K., Shinohara, M., Kanazawa, T., Uehira, K.: Successive estimation of a tsunami wavefield without earthquake source data: a data assimilation approach toward real-time tsunami forecasting. Geophys. Res. Lett. 42 (19), 7923–7932 (2015)

    Article  Google Scholar 

  16. Nocedal, J., Wright, S.: Numerical optimization. Springer (2002)

  17. Okada, Y.: Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Amer. 75, 1135–1154 (1985)

    Google Scholar 

  18. Pires, C., Miranda, P.M.A.: Tsunami waveform inversion by adjoint methods. J. Geophys. Res.: Oceans 106(C9), 19773–19796 (2001)

    Article  Google Scholar 

  19. Protas, B., Bewley, T., Hagen, G.: A comprehensive framework for the regularization of adjoint analysis in multiscale PDE systems. J. Comput. Phys. 195, 49–89 (2004)

    Article  MathSciNet  Google Scholar 

  20. Stefanescu, R., Sandu, R., Navon, I.M.: POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation. J. Comput. Phys. 295, 569–595 (2015)

    Article  MathSciNet  Google Scholar 

  21. Spiteri, R., Ruuth, S.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

    Article  MathSciNet  Google Scholar 

  22. Stengel, R.F.: Optimal control and estimation. Dover (1994)

  23. Steward, J.L., Navon, I.M., Zupanski, M., Karmitsa, N.: Impact of non-smooth observation operators on variational and sequential data assimilation for a limited-area shallow-water equation model. Q. J. R. Meteorol. Soc. 138(663, B), 323–339 (2012)

    Article  Google Scholar 

  24. Tarantola, A.: Inverse problem theory and methods for model parameter estimation. SIAM (2005)

  25. Tirupathi, S., Tchrakian, T.T., Zhuk, S., McKenna, S.: Shock capturing data assimilation algorithm for 1d shallow water equations. Adv. Water Resour. 88, 198–210 (2016)

    Article  Google Scholar 

  26. Titov, V., Rabinovich, A., Mofjeld, H., Thomson, R., González, F.: The global reach of the 26 December 2004 Sumatra tsunami. Science 309, 2045–2048 (2005)

    Article  Google Scholar 

  27. Vlasenko, A., Korn, P., Riehme, J., Naumann, U.: Estimation of data assimilation error: a shallow-water model study. Mon. Weather Rev. 142(7), 2502–2520 (2014)

    Article  Google Scholar 

  28. Żabczyk, J.: Mathematical control theory. An introduction birkhȧuser (1995)

  29. Zhu, K., Navon, I.M., Zou, X.: Variational data assimilation with a variable resolution finite-element shallow-water equations model. Mon. Weather Rev. 122(5), 946–965 (1994)

    Article  Google Scholar 

  30. Zou, X., Navon, I., Dimet, F.L.: Incomplete observations and control of gravity waves in variational data assimilation. Tellus A: Dynamic meteorology and oceanography 44(4), 273–296 (1992)

    Article  Google Scholar 

  31. Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to our colleague S. Alama for his suggestion to use the Fourier transform to analyze the fixed point of the gradient descent algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K.-R. Kevlahan.

Additional information

Communicated by: Youssef Marzouk

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was funded by the NSERC Discovery Grants of N.K.-R. Kevlahan and B. Protas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kevlahan, N.KR., Khan, R. & Protas, B. On the convergence of data assimilation for the one-dimensional shallow water equations with sparse observations. Adv Comput Math 45, 3195–3216 (2019). https://doi.org/10.1007/s10444-019-09733-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09733-6

Keywords

Mathematics Subject Classification (2010)

Navigation