Advertisement

A well-balanced numerical scheme for a model of two-phase flows with treatment of nonconservative terms

  • Mai Duc ThanhEmail author
Article
  • 20 Downloads

Abstract

We construct a numerical scheme for a model of two-phase flows. The keystone is the treatment of nonconservative terms using stationary contact discontinuities. The nonconservative terms are absorbed into left-hand and right-hand states of the local stationary contact discontinuity at each grid node. The numerical scheme is built by taking into accounts the states on both sides of local contact discontinuities as supplemented facts of a standard numerical approximation for the conservative part of the system. The scheme is shown to possess interesting properties: it preserves the positivity of the volume fractions in both phases and the positivity of the gas density, it is well-balanced and satisfying the numerical minimum entropy principle in the gas phase.

Keywords

Two-phase flow Nonconservative term Numerical approximation Well-balanced scheme Accuracy Shock Discontinuity 

Mathematics Subject Classification (2010)

35L65 65M06 76T10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The author would like to thank the reviewers for their very constructive comments and fruitful discussions.

Funding information

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number B2018-28-01.

References

  1. 1.
    Ambroso, A., Chalons, C., Coquel, F., Galié, T.: Relaxation and numerical approximation of a two-fluid two-pressure diphasic model. Math. Mod. Numer. Anal. 43, 1063–1097 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambroso, A., Chalons, C., Raviart, P.-A.: A Godunov-type method for the seven-equation model of compressible two-phase flow. Comput. Fluids 54, 67–91 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andrianov, N., Warnecke, G.: The Riemann problem for the Baer-Nunziato model of two-phase flows. J. Comput. Phys. 195, 434–464 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multi-phase Flow 12, 861–889 (1986)CrossRefzbMATHGoogle Scholar
  6. 6.
    Botchorishvili, R., Perthame, B., Vasseur, A.: Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comput. 72, 131–157 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Botchorishvili, R., Pironneau, O.: Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws. J. Comput. Phys. 187, 391–427 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources. Frontiers in Mathematics Series, Birkhäuser (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bzil, J.B., Menikoff, R., Son, S.F., Kapila, A.K., Steward, D.S.: Two-phase modelling of a deflagration-to-detonation transition in granular materials: a critical examination of modelling issues. Phys. Fluids 11, 378–402 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chalons, C., Girardin, M., Kokh, S.: An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes. J. Comput. Phys. 335, 885–904 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chalons, C., Fox, R.O., Laurent, F., Massot, M., Vié, A.: Multivariate gaussian extended quadrature method of moments for turbulent disperse multiphase flow. SIAM J. Mult. Mod. Simul. 15, 1553–1583 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Coquel, F., Saleh, K., Seguin, N., robust, A: entropy-satisfying numerical scheme for fluid flows in discontinuous nozzles. Math. Mod. Meth. Appl Sci. 24, 2043–2083 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Coquel, F., Hérard, J.-M., Saleh, K.: A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model. J. Comput. Phys. 330, 401–435 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cuong, D.H., Thanh, M.D.: Building a Godunov-type numerical scheme for a model of two-phase flows. Comput. Fluids 148, 69–81 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cuong, D.H., Thanh, M.D.: A well-balanced van Leer-type numerical scheme for shallow water equations with variable topography. Adv. Comput. Math. 43, 1197–1225 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dubroca, B.: Roe’s matrix for Euler equations, Positively conservative. In: 16th Int. Conf. Num. Meth. Fluid Dyn. (Arcachon, 1998), Lecture Notes in Phys., vol. 515, pp. 272-277, Springer, Berlin.  https://doi.org/10.1007/BFb0106594
  17. 17.
    Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Gallouët, T., Hérard, J.-M., Seguin, N.: Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14, 663–700 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Greenberg, J.M., Leroux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Han, X., Li, G.: Well-balanced finite difference WENO schemes for the Ripa model. Comput. Fluids 134-135, 1–10 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Isaacson, E., Temple, B.: Convergence of the 22 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl Math. 55, 625–640 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jo, G., Kwak, D.Y.: An IMPES scheme for a two-phase flow in heterogeneous porous media using a structured grid. Comp. Meth. Appl. Mech. Engin. 317, 684–701 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Karni, S., Hernández-Duenas, G.: A hybrid algorithm for the Baer-Nunziato model using the riemann invariants. J. Sci. Comput. 45, 382–403 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kröner, D., Thanh, M.D.: Numerical solutions to compressible flows in a nozzle with variable cross-section. SIAM J. Numer. Anal. 43, 796–824 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lowe, C.A.: Two-phase shock-tube problems and numerical methods of solution. J. Comput. Phys. 204, 598–632 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    LeFloch, P.G., Thanh, M.D.: A Godunov-type method for the shallow water equations with variable topography in the resonant regime. J. Comput. Phys. 230, 7631–7660 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Menikoff, R.: Empirical Equations of State for Solids. In: Shock Wave Science and Technology Reference Library , vol. 2, pp 143–188. Solids, Springer, Berlin (2007)Google Scholar
  28. 28.
    Munkejord, S.T.: Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation. Comput. & Fluids 36, 1061–1080 (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Qian, S.G., Shao, F.J., Li, G.: High order well-balanced discontinuous Galerkin methods for shallow water flow under temperature fields. Comput. Appl. Math. 37, 5775–5794 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Saurel, R., Abgrall, R.: A multi-phase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150, 425–467 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Schwendeman, D.W., Wahle, C.W., Kapila, A.K.: The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212, 490–526 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Thanh, M.D.: A phase decomposition approach and the Riemann problem for a model of two-phase flows. J. Math. Anal Appl. 418, 569–594 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Thanh, M.D., Kröner, D., Chalons, C.: A robust numerical method for approximating solutions of a model of two-phase flows and its properties. Appl. Math. Comput. 219, 320–344 (2012)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Thanh, M.D.: Completing a well-balanced numerical method for a model of two-phase flows by computing correctors. Appl. Math. Comput. 322, 6–29 (2018)MathSciNetGoogle Scholar
  35. 35.
    Touma, R., Klingenberg, C.: Well-balanced central finite volume methods for the Ripa system. Appl. Num. Math. 97, 42–68 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsInternational University, Vietnam National University-Ho Chi Minh CityHo Chi Minh CityVietnam

Personalised recommendations