Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Advances in Computational Mathematics
  3. Article

An optimal adaptive tensor product wavelet solver of a space-time FOSLS formulation of parabolic evolution problems

  • Open access
  • Published: 23 November 2018
  • volume 45, pages 1031–1066 (2019)
Download PDF

You have full access to this open access article

Advances in Computational Mathematics Aims and scope Submit manuscript
An optimal adaptive tensor product wavelet solver of a space-time FOSLS formulation of parabolic evolution problems
Download PDF
  • Nikolaos Rekatsinas1 &
  • Rob Stevenson1 
  • 375 Accesses

  • 5 Citations

  • Explore all metrics

Cite this article

Abstract

In this work, we construct a well-posed first-order system least squares (FOSLS) simultaneously space-time formulation of parabolic PDEs. Using an adaptive wavelet solver, this problem is solved with the best possible rate in linear complexity. Thanks to the use of a basis that consists of tensor products of wavelets in space and time, this rate is equal to that when solving the corresponding stationary problem. Our findings are illustrated by numerical results.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Aimar, H., Gómez, I.: Parabolic Besov regularity for the heat equation. Constr. Approx. 36(1), 145–159 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpert, B.: A class of bases in L 2 for the sparse representation of integral operators. SIAM J. Math. Anal. 24, 246–262 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreev, R.: Space-time discretization of the heat equation. Numer. Algorithms 67(4), 713–731 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Binev, P., DeVore, R.: Fast computation in adaptive tree approximation. Numer. Math. 97(2), 193–217 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babuška, I., Janik, T.: The h-p version of the finite element method for parabolic equations. I. The p-version in time. Numer. Methods Partial Differential Equations 5(4), 363–399 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Babuška, I., Janik, T.: The h-p version of the finite element method for parabolic equations. II. The h-p version in time. Numer. Methods Partial Differential Equations 6(4), 343–369 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balder, R., Zenger, C.: The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput. 17(3), 631–646 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations – convergence rates, vol. 70 (2001)

  10. Cioica, P., Dahlke, S., Döhring, N., Friedrich, U., Kinzel, S., Lindner, F., Raasch, T., Ritter, K., Schilling, R.: Convergence analysis of spatially adaptive Rothe methods. Found. Comput. Math. 14(5), 863–912 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen, A., Dahmen, W., Daubechies, I., DeVore, R.: Tree approximation and optimal encoding. Appl. Comput. Harmon. Anal. 11(2), 192–226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chegini, N., Dahlke, S., Friedrich, U., Stevenson, R.: Piecewise tensor product wavelet bases by extensions and approximation rates. Math. Comp. 82, 2157–2190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chegini, N., Stevenson, R.: Adaptive wavelets schemes for parabolic problems: sparse matrices and numerical results. SIAM J. Numer. Anal. 49(1), 182–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chegini, N., Stevenson, R.: An adaptive wavelet method for semi-linear first-order system least squares. Comput. Methods Appl. Math. 15(4), 439–463 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Dörfler, W., Findeisen, S., Wieners, C.: Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems. Comput. Methods Appl. Math. 16(3), 409–428 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Springer, Berlin (1992). Evolution problems I

    MATH  Google Scholar 

  17. Dahmen, W., Stevenson, R.: Element-by-element construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal. 37(1), 319–352 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dauge, M., Stevenson, R.: Sparse tensor product wavelet approximation of singular functions. SIAM J. Math. Anal. 42(5), 2203–2228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ellis, T., Chan, J., Demkowicz, L.: Robust DPG methods for transient convection-diffusion, in Building bridges: connections and challenges in modern approaches to numerical partial differential equations. Lect. Notes Comput. Sci. Eng. 114, 179–203 (2016). Springer

    Article  Google Scholar 

  20. Gantumur, T., Harbrecht, H., Stevenson, R.: An optimal adaptive wavelet method without coarsening of the iterands. Math. Comp. 76, 615–629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gunzburger, M., Kunoth, A.: Space-time adaptive wavelet methods for control problems constrained by parabolic evolution equations. J. Contr. Optim. 49(3), 1150–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gander, M., Neumüller, M.: Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38(4), A2173–A2208 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Griebel, M., Oswald, P.: Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems. Adv. Comput. Math. 4(1–2), 171–206 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Griebel, M., Oeltz, D.: A sparse grid space-time discretization scheme for parabolic problems. Computing 81(1), 1–34 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kestler, S., Stevenson, R.: Fast evaluation of system matrices w.r.t. multi-tree collections of tensor product refinable basis functions. J. Comput. Appl. Math. 260, 103–116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kestler, S., Steih, K., Urban, K.: An efficient space-time adaptive wavelet Galerkin method for time-periodic parabolic partial differential equations. Math. Comput. 85(299), 1309–1333 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Langer, U., Moore, S., Neumüller, M.: Space-time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Mech. Engrg. 306, 342–363 (2016)

    Article  MathSciNet  Google Scholar 

  28. Majidi, M., Starke, G.: Least-squares Galerkin methods for parabolic problems. II. The fully discrete case and adaptive algorithms. SIAM J. Numer. Anal. 39(5), 1648–1666 (2001/02)

  29. Majidi, M., Starke, G.: Least-squares Galerkin methods for parabolic problems. I. Semidiscretization in time. SIAM J. Numer. Anal. 39(4), 1302–1323 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Messner, M., Schanz, M., Tausch, J.: A fast Galerkin method for parabolic space-time boundary integral equations. J. Comput. Phys. 258, 15–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nitsche, P.-A.: Best N-term approximation spaces for tensor product wavelet bases. Constr. Approx. 24(1), 49–70 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nguyen, H., Stevenson, R.: Finite element wavelets with improved quantitative properties. J. Comput. Appl. Math. 230(2), 706–727 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rekatsinas, N.: Optimal adaptive wavelet methods for solving first order system least squares, PhD thesis University of Amsterdam (2018)

  34. Rekatsinas, N., Stevenson, R.: An optimal adaptive wavelet method for first order system least squares. Numer. Math. 140(1), 191–237 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rekatsinas, N., Stevenson, R.: A quadratic finite element wavelet Riesz basis. Int. J. Wavelets Multiresolution Inf. Process. 16(4), 1850033, 17 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schwab, C., Stevenson, R.: A space-time adaptive wavelet method for parabolic evolution problems. Math. Comp. 78, 1293–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schwab, C., Stevenson, R.: Fractional space-time variational formulations of (Navier)-Stokes equations. SIAM J. Math. Anal. 49(4), 2442–2467 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stevenson, R.: Stable three-point wavelet bases on general meshes. Numer. Math. 80, 131–158 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stevenson, R.: Adaptive wavelet methods for linear and nonlinear least-squares problems, Found. Comput. Math. 14(2), 237–283 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Steinbach, O.: Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15(4), 551–566 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Sickel, W., Ullrich, T.: Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross. J. Approx. Theory 161, 748–786 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Volume 68 of Applied Mathematical Sciences, 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands

    Nikolaos Rekatsinas & Rob Stevenson

Authors
  1. Nikolaos Rekatsinas
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Rob Stevenson
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Rob Stevenson.

Additional information

Communicated by: Ivan Oseledets

The first author has been supported by the Netherlands Organization for Scientific Research (NWO) under contract. no. 613.001.216

Appendix: Decay estimates

Appendix: Decay estimates

In this Appendix we prove the technical results Theorem A.3, Corollaries A.7, A.9, and A.11 that were used in the proof of Theorem 4.18.

The following lemma is an application of Schur’s lemma that is often used to bound the spectral norm of a matrix whose row and column indices run over index sets of multi-level bases.

Lemma A.1

For index sets\(J,J^{\prime }\),let\(|\cdot | \colon J \cup J^{\prime } \rightarrow \mathbb {N}_{0}\),and let\(M:=[m_{\lambda ^{\prime },\lambda }]_{(\lambda ^{\prime },\lambda ) \in J^{\prime } \times J}\)besuch that for someξ ≥ 0,ρ > 0,

$$\begin{array}{@{}rcl@{}} \#\{\lambda^{\prime}\colon m_{\lambda^{\prime},\lambda}\neq 0,|\lambda^{\prime}|=|\lambda|+k\} &\lesssim 2^{\xi k} \quad(\lambda \in J,k \in \mathbb{N}_{0}),\\ \#\{\lambda\colon m_{\lambda^{\prime},\lambda}\neq 0,|\lambda^{\prime}|=|\lambda|+k\} &\lesssim 1 \quad(\lambda^{\prime} \in J^{\prime},k \in \mathbb{N}_{0}), \end{array} $$

and

$$|m_{\lambda^{\prime},\lambda}| \lesssim 2^{(|\lambda|-|\lambda^{\prime}|)(\rho+\frac{\xi}{2})} \quad(|\lambda^{\prime}|\geq |\lambda|). $$

Then

$$\||M|_{\{(\lambda^{\prime},\lambda)\colon |\lambda^{\prime}|>|\lambda|+k\}}|\| \lesssim 2^{-\rho k}, $$

where \((M|_{\{(\lambda ^{\prime },\lambda )\colon |\lambda ^{\prime }|>|\lambda |+k\}})_{\lambda ^{\prime },\lambda }:=\left \{\begin {array}{cl} m_{\lambda ^{\prime },\lambda } & \text {when} |\lambda ^{\prime }|>|\lambda |+k\\ 0 & \text {otherwise} \end {array} \right .\), and ∥⋅∥ denotes the matrix spectral norm, i.e., here the norm on \(\mathcal {L}(\ell _{2}(J),\ell _{2}(J^{\prime }))\). The absolute value refers to taking entry-wise absolute value. (Similar notations will be used at other occasions.)

Proof

With \(I_{\ell ^{\prime },\ell }:=[|m_{\lambda ^{\prime },\lambda }|]_{\{(\lambda ^{\prime },\lambda )\colon |\lambda ^{\prime }|=\ell ^{\prime }, |\lambda |=\ell \}}\), we have

$$\||M|_{\{(\lambda^{\prime},\lambda)\colon |\lambda^{\prime}|>|\lambda|+k\}}|\|^{2} \lesssim \max_{\ell^{\prime}} \sum\limits_{\ell<\ell^{\prime}-k} \|I_{\ell^{\prime},\ell}\| \times \max_{\ell} \sum\limits_{\ell^{\prime}>\ell+k} \|I_{\ell^{\prime},\ell}\|, $$

where \(\ell , \ell ^{\prime }\) run over \(\mathbb {N}_{0}\).

The number of non-zero entries in each column or row of \(I_{\ell ^{\prime },\ell }\) is \(\lesssim 2^{\xi (\ell ^{\prime }-\ell )}\) or \(\lesssim 1\), respectively. Using \(\|\cdot \|^{2} \leq \|\cdot \|_{1}\|\cdot \|_{\infty }\), we infer that \(\|I_{\ell ^{\prime },\ell }\|^{2} \lesssim 2^{\xi (\ell ^{\prime }-\ell )} \cdot 2^{(\frac {\xi }{2}+\rho )(\ell -\ell ^{\prime })} \cdot 1 \cdot 2^{(\frac {\xi }{2}+\rho )(\ell -\ell ^{\prime })} = 4^{\rho (\ell -\ell ^{\prime })}\). □

The next lemma concerns near-sparsity of a generalized mass matrix corresponding to two temporal wavelet bases.

Lemma A.2

For \(k \in \mathbb {N}_{0}\) , \({\Theta }^{*}, {\Theta }^{\circ } \in \{{\Theta }^{\mathscr{V}_{1}}, {\Theta }^{\mathscr{P}}, {\Theta }^{a}, {\Theta }^{\mathscr{U}}/\|{\Theta }^{\mathscr{U}}\|_{L_{2}(\mathrm {I})}\}\) we have

$$\||\langle {\Theta}^{*}, {\Theta}^{\circ}\rangle_{L_{2}(\mathrm{I})}|_{\{(\lambda^{\prime},\lambda) \colon |\lambda^{\prime}|>|\lambda|+k\}}|\|\lesssim 2^{-k/2}. $$

Proof

Using that Θ∗ satisfies (t1)–(t4), being the counterparts of (s1)–(s4) for the spatial wavelets, we split the matrix into Br + Bs, where Br contains all its entries \(\langle \theta ^{*}_{\lambda ^{\prime }}, \theta ^{\circ }_{\lambda }\rangle _{L_{2}(\mathrm {I})}\) for which \(\text {supp} \theta ^{*}_{\lambda ^{\prime }}\) is contained in ω for some \(\omega \in \mathcal {O}_{\mathrm {I}}\) with |ω| = |λ| (the ‘regular’ entries), and where Bs contains the remaining (‘singular’) entries.

The number of non-zero entries with \(|\lambda ^{\prime }|=\ell ^{\prime }\) and |λ| = ℓ in each column or row of Br is \(\lesssim 2^{\ell ^{\prime }-\ell }\) or \(\lesssim 1\), respectively. Thanks to (t4), for each of these entries we have \(|\langle \theta ^{*}_{\lambda ^{\prime }}, \theta ^{\circ }_{\lambda }\rangle _{L_{2}(\mathrm {I})}| \leq \|\theta ^{*}_{\lambda ^{\prime }}\|_{L_{1}(\mathrm {I})} 2^{-\ell ^{\prime }} |\theta ^{\circ }_{\lambda }|_{W^{1}_{\infty }(\text {supp} \theta ^{*}_{\lambda ^{\prime }})} \lesssim 2^{3(\ell -\ell ^{\prime })/2}\). An application of Lemma A.1 with ξ = ρ = 1 shows that \(\||B^{r}|\| \lesssim 2^{-k}\).

The number of non-zero entries with \(|\lambda ^{\prime }|=\ell ^{\prime }\) and |λ| = ℓ in each column or row of Bs is \(\lesssim 1\). For each of these entries, we have \(|\langle \theta ^{*}_{\lambda ^{\prime }}, \theta ^{\circ }_{\lambda }\rangle _{L_{2}(\mathrm {I})}| \leq \|\theta ^{*}_{\lambda ^{\prime }}\|_{L_{1}(\mathrm {I})} \|\theta ^{\circ }_{\lambda }\|_{L_{\infty }(\mathrm {I})} \lesssim 2^{(\ell -\ell ^{\prime })/2}\). An application of Lemma A.1 with ξ = 0, \(\rho =\frac {1}{2}\) shows that \(\||B^{s}|\| \lesssim 2^{-k/2}\). □

The following theorem provides the main ingredient for bounding \(\|\textbf {r}_{\frac {1}{2}}-{\tilde {\textbf {r}}}_{\frac {1}{2}}\|\).

Theorem A.3

Let Λa ⊂∨abea multi-tree, and\(r \in \text {span} {\Psi }^{a}\|_{{\Lambda }^{a}}\)For\(k \in \mathbb {N}_{0}\),it holds that

$$ \|\langle {\Psi}^{\mathscr{V}_{1}},r\rangle_{L_{2}(\mathrm{I} \times {\Omega})}|_{\vee_{\mathscr{V}_{1}} \setminus \vee_{\mathscr{V}_{1}}({\Lambda}^{a},k)}\| \lesssim 2^{-k/2} \|r\|_{L_{2}(\mathrm{I};H^{-1}({\Omega}))}. $$
(A.1)

Proof

We write \(r={\sum }_{(\lambda ,\mu ) \in {\Lambda }^{a}} r_{\lambda \mu } \theta ^{a}_{\lambda } \otimes \sigma ^{a}_{\mu }\), and let

$$\delta_{\lambda}(\mu^{\prime}):=\left\{ \begin{array}{ll} 0 & |\mu^{\prime}| \leq \max\{|\mu| \colon \mu \in {{\Lambda}^{a}_{2}}(\lambda),\text{meas}(\mathcal{S}(\sigma_{\mu^{\prime}}^{\mathscr{V}_{1}}) \cap \text{supp}\sigma^{a}_{\mu})>0\}+k\\ 1 & \text{elsewhere} \end{array} \right., $$

Writing \({\Lambda }^{\mathscr{V}_{1}}:=\vee _{\mathscr{V}_{1}}({\Lambda }^{a},k)\), from \(\frac {1}{2}(a+b)^{2} \leq (a^{2}+b^{2})\), we have that

$$\begin{array}{@{}rcl@{}} &&{}\frac{1}{2}\|\langle {\Psi}^{\mathscr{V}_{1}},r\rangle_{L_{2}(\mathrm{I} \times {\Omega})}|_{\vee_{\mathscr{V}_{1}} \setminus {\Lambda}^{\mathscr{V}_{1}}}\|^{2} \\ &&{}\leq{}\sum\limits_{\mu^{\prime} \in \Diamond_{\mathscr{V}_{1}}} \sum\limits_{\lambda^{\prime} \in \lhd_{\mathscr{V}_{1}}\setminus {\Lambda}^{\mathscr{V}_{1}}_{1}(\mu^{\prime})} |\sum\limits_{|\lambda^{\prime}|>|\lambda|+k} \langle \theta_{\lambda^{\prime}}^{\mathscr{V}_{1}},\theta^{a}_{\lambda}\rangle_{L_{2}(\mathrm{I})} \langle \sigma^{\mathscr{V}_{1}}_{\mu^{\prime}},\sum\limits_{\mu \in {{\Lambda}^{a}_{2}}(\lambda)} r_{\lambda \mu} \sigma^{a}_{\mu}\rangle_{L_{2}({\Omega})}|^{2}\\ &&{}+{}\sum\limits_{\mu^{\prime} \in \Diamond_{\mathscr{V}_{1}}} \sum\limits_{\lambda^{\prime} \in \lhd_{\mathscr{V}_{1}}\setminus {\Lambda}^{\mathscr{V}_{1}}_{1}(\mu^{\prime})} |{}\sum\limits_{|\lambda| \geq |\lambda^{\prime}|-k} \langle \theta_{\lambda^{\prime}}^{\mathscr{V}_{1}},\theta^{a}_{\lambda}\rangle_{L_{2}(\mathrm{I})} \delta_{\lambda}(\mu^{\prime}) \langle \sigma^{\mathscr{V}_{1}}_{\mu^{\prime}},{}\sum\limits_{\mu \in {{\Lambda}^{a}_{2}}(\lambda)} r_{\lambda \mu} \sigma^{a}_{\mu}\rangle_{L_{2}({\Omega})}|^{2}\\ \end{array} $$
(A.2)

Here, we could insert the factor \(\delta _{\lambda }(\mu ^{\prime })\) in the second sum because of the following reason: Let \((\lambda ^{\prime },\mu ^{\prime }) \in \vee _{\mathscr{V}_{1}} \setminus {\Lambda }^{\mathscr{V}_{1}}\) and \(\lambda \in {{\Lambda }^{a}_{1}}\) with \(|\lambda |\geq |\lambda ^{\prime }|-k\). If \(\text {meas}(\mathcal {S}(\theta _{\lambda ^{\prime }}^{\mathscr{V}_{1}}) \cap \text {supp} \theta ^{a}_{\lambda })= 0\), then the value of \(\delta _{\lambda }(\mu ^{\prime })\) is irrelevant. If \(\text {meas}(\mathcal {S}(\theta _{\lambda ^{\prime }}^{\mathscr{V}_{1}}) \cap \text {supp} \theta ^{a}_{\lambda })>0\), then the definition of \({\Lambda }^{\mathscr{V}_{1}}=\vee _{\mathscr{V}_{1}}({\Lambda }^{a},k)\) shows that \(|\mu ^{\prime }|>|\mu |+k\) for all \(\mu \in {{\Lambda }^{a}_{2}}(\lambda )\) with \(\text {meas}(\mathcal {S}(\sigma _{\mu ^{\prime }}^{\mathscr{V}_{1}}) \cap \text {supp} \sigma ^{a}_{\mu })>0\), meaning that \(\delta _{\lambda }(\mu ^{\prime })= 1\).

Using Lemma A.2 for \(({\Theta }^{*},{\Theta }^{\circ })=({\Theta }^{\mathscr{V}_{1}},{\Theta }^{a})\), the first sum can be bounded on a multiple of

$$\begin{array}{@{}rcl@{}} &&\sum\limits_{\mu^{\prime} \in \Diamond_{\mathscr{V}_{1}}} 2^{-k} \sum\limits_{\lambda \in \lhd_{a}} |\langle \sigma_{\mu^{\prime}}^{\mathscr{V}_{1}}, \sum\limits_{\mu \in {{\Lambda}^{a}_{2}}(\lambda)} r_{\lambda \mu} \sigma^{a}_{\mu}\rangle_{L_{2}({\Omega})}|^{2}\\ &&= 2^{-k}\sum\limits_{\lambda \in \lhd_{a}} \sum\limits_{\mu^{\prime} \in \Diamond_{\mathscr{V}_{1}}} |\langle \sigma_{\mu^{\prime}}^{\mathscr{V}_{1}}, \sum\limits_{\mu \in {{\Lambda}^{a}_{2}}(\lambda)} r_{\lambda \mu} \sigma^{a}_{\mu}\rangle_{L_{2}({\Omega})}|^{2}\\&&\eqsim 2^{-k} \sum\limits_{\lambda \in \lhd_{a}} \|\sum\limits_{\mu \in {{\Lambda}^{a}_{2}}(\lambda)} r_{\lambda \mu} \sigma^{a}_{\mu}\|_{H^{-1}({\Omega})}^{2}\\ && \eqsim 2^{-k} \|\sum\limits_{\lambda \in \lhd_{a}} \theta^{a}_{\lambda} \otimes \sum\limits_{\mu \in {{\Lambda}^{a}_{2}}(\lambda)} r_{\lambda \mu} \sigma^{a}_{\mu}\|_{L_{2}(\mathrm{I};H^{-1}({\Omega}))}^{2} = 2^{-k}\| r\|_{L_{2}(\mathrm{I};H^{-1}({\Omega}))}^{2}, \end{array} $$

where we used that \({\Sigma }^{\mathscr{V}_{1}}\) is a Riesz basis for \({H^{1}_{0}}({\Omega })\), and that Θa is a Riesz basis for L2(I).

To bound the second sum, recall that for μ ∈◇a, it holds that \(\text {supp} \sigma ^{a}_{\mu }=\omega _{\mu }\) for some \(\omega _{\mu } \in \mathcal {O}_{\Omega }\) with \(|\omega _{\mu }|=\max (|\mu |-1,0)\). Define the tiling \(\mathcal {T}(\lambda ) \in \mathcal {O}_{\Omega }\) as the union, over the leaves μ of the tree \({{\Lambda }^{a}_{2}}(\lambda )\), of the children of ωμ when |μ| > 0, or of ωμ itself when |μ| = 0. Then \(\text {span}\{\sigma ^{a}_{\mu } \colon \mu \in {{\Lambda }^{a}_{2}}(\lambda )\}=\mathcal {P}_{m}(\mathcal {T}(\lambda ))\), and \(\{\mu ^{\prime } \in \Diamond _{\mathscr{V}_{1}}\colon \delta _{\lambda }(\mu ^{\prime })= 1\}=\Diamond _{\mathscr{V}_{1}} \setminus \Diamond _{\mathscr{V}_{1}}(\mathcal {T}(\lambda ),k)\), cf. Definition 4.7.

Since Θa and \({\Theta }^{\mathscr{V}_{1}}\) are Riesz bases for L2(I), and so \(\langle {\Theta }^{\mathscr{V}_{1}},{\Theta }^{a} \rangle _{L_{2}(\mathrm {I})} \in \mathcal {L}(\ell _{2}(\lhd _{a}),\ell _{2}(\lhd _{\mathscr{V}_{1}}))\), invoking [34, Prop. A.1] using that \({\Sigma }^{\mathscr{V}_{1}}\) satisfies (s1)–(s4), the second sum can be bounded on a multiple of

$$\begin{array}{@{}rcl@{}} &&\sum\limits_{\mu^{\prime} \in \Diamond_{\mathscr{V}_{1}}} \sum\limits_{\lambda \in \lhd_{a}} | \delta_{\lambda}(\mu^{\prime}) \langle \sigma_{\mu^{\prime}}^{\mathscr{V}_{1}}, \sum\limits_{\mu \in {{\Lambda}^{a}_{2}}(\lambda)} r_{\lambda \mu} \sigma^{a}_{\mu}\rangle_{L_{2}({\Omega})}|^{2}\\ &&= \sum\limits_{\lambda \in \lhd_{a}} \sum\limits_{\mu^{\prime} \in \Diamond_{\mathscr{V}_{1}}} | \delta_{\lambda}(\mu^{\prime}) \langle \sigma_{\mu^{\prime}}^{\mathscr{V}_{1}}, \sum\limits_{\mu \in {{\Lambda}^{a}_{2}}(\lambda)} r_{\lambda \mu} \sigma^{a}_{\mu}\rangle_{L_{2}({\Omega})}|^{2} \\&&\lesssim \sum\limits_{\lambda \in \lhd_{a}} 4^{-k} \|\sum\limits_{\mu \in {{\Lambda}^{a}_{2}}(\lambda)} r_{\lambda \mu} \sigma^{a}_{\mu}\|_{H^{-1}({\Omega})}^{2}\\ && \eqsim 4^{-k} \|\sum\limits_{\lambda \in \lhd_{a}} \theta^{a}_{\lambda} \otimes \sum\limits_{\mu \in {{\Lambda}^{a}_{2}}(\lambda)} r_{\lambda \mu} \sigma^{a}_{\mu}\|_{L_{2}(\mathrm{I};H^{-1}({\Omega}))}^{2} = 4^{-k}\| r\|_{L_{2}(\mathrm{I};H^{-1}({\Omega}))}^{2}, \end{array} $$

where we used that Θa is a Riesz basis for L2(I). □

If Θa was a Riesz basis for H− 1(Ω), then in the proof of Theorem A.3 it would have been natural to write \(\langle \sigma ^{\mathscr{V}_{1}}_{\mu ^{\prime }},{\sum }_{\mu \in {{\Lambda }^{a}_{2}}(\lambda )} r_{\lambda \mu } \sigma ^{a}_{\mu }\rangle _{L_{2}({\Omega })}\) as \(\langle {\Sigma }^{\mathscr{V}_{1}},{\Sigma }^{a}\rangle _{L_{2}({\Omega })} \)\([ r_{\lambda \mu }]_{\mu \in {{\Lambda }^{a}_{2}}(\lambda )}\). In this case the approach of the insertion of the factor \(\delta _{\lambda }(\mu ^{\prime })\) would have given the bound

$$\begin{array}{@{}rcl@{}} {\textstyle \frac{1}{2}}\sqrt{2} &&\|\langle {\Psi}^{\mathscr{V}_{1}},{\Psi}^{a}\rangle_{L_{2}(\mathrm{I} \times {\Omega})}|_{\vee_{\mathscr{V}_{1}} \setminus {\Lambda}^{\mathscr{V}_{1}}({\Lambda}^{a},k)\times {\Lambda}^{a}}\| \leq \\ && \|\langle{\Theta}^{\mathscr{V}_{1}},{\Theta}^{a}\rangle_{L_{2}(\mathrm{I})}|_{\{(\lambda^{\prime},\lambda)\colon |\lambda^{\prime}|>|\lambda|+k\}}\| \|\langle {\Sigma}^{\mathscr{V}_{1}}, {\Sigma}^{a} \rangle_{L_{2}({\Omega})} \| +\\ && \|\langle{\Theta}^{\mathscr{V}_{1}},{\Theta}^{a}\rangle_{L_{2}(\mathrm{I})}\| \|\langle{\Sigma}^{\mathscr{V}_{1}},{\Sigma}^{a}\rangle_{L_{2}({\Omega})}|_{\{(\mu^{\prime},\mu)\colon |\mu^{\prime}|>|\mu|+k\}}\|. \end{array} $$

Although in the current setting where \(\langle {\Sigma }^{\mathscr{V}_{1}}, {\Sigma }^{a} \rangle _{L_{2}({\Omega })} \not \in \mathcal {L}(\ell _{2}(\Diamond _{a}),\ell _{2}(\Diamond _{\mathscr{V}_{1}}))\), this estimate makes not much sense, for other collections this result, formulated in the next proposition, is going to be useful.

Proposition A.4

For\(*,\circ \in \{\mathscr{U},\mathscr{V}_{1},\mathscr{P},a\}\),let\(M_{\lhd }:=[m^{\lhd }_{\lambda ^{\prime }, \lambda }]_{(\lambda ^{\prime },\lambda )} \in \mathcal {L}(\ell _{2}(\lhd _{*}),\ell _{2}(\lhd _{\circ }))\),\(M_{\Diamond }:=[m^{\Diamond }_{\mu ^{\prime }, \mu }]_{(\mu ^{\prime },\mu )} \in \mathcal {L}(\ell _{2}(\Diamond _{*}),\ell _{2}(\Diamond _{\circ }))\),where\(m^{\lhd }_{\lambda ^{\prime }, \lambda }= 0\)when\(\text {meas}(\mathcal {S}(\theta ^{\circ }_{\lambda ^{\prime }}) \cap \text {supp} \theta ^{*}_{\lambda }) = 0\),and\(m^{\Diamond }_{\mu ^{\prime }, \mu }= 0\)when\(\text {meas}(\mathcal {S}(\sigma ^{\circ }_{\mu ^{\prime }}) \cap \text {supp} \sigma ^{*}_{\mu }) = 0\).Then for a multi-tree Λ∗⊂∨∗,and\( k \in \mathbb {N}_{0}\),it holds that

$$\begin{array}{@{}rcl@{}} {\textstyle \frac{1}{2}}\sqrt{2}&&\|M_{\lhd} \otimes M_{\Diamond} |_{(\vee_{\circ} \setminus {\Lambda}^{\circ}({\Lambda}^{*},k)) \times {\Lambda}^{*}}\| \leq\\ &&\|M_{\lhd}|_{\{(\lambda^{\prime},\lambda)\colon |\lambda^{\prime}|>|\lambda|+k\}}\| \|M_{\Diamond} \| +\|M_{\lhd}\| \|M_{\Diamond}|_{\{(\mu^{\prime},\mu)\colon |\mu^{\prime}|>|\mu|+k\}}\|. \end{array} $$

The remaining of this Appendix will consist of various applications of Proposition A.4 for which in several lemmas we estimate norms of type \(\|M_{\lhd }|_{\{(\lambda ^{\prime },\lambda )\colon |\lambda ^{\prime }|>|\lambda |+k\}}\|\) or \(\|M_{\lhd }|_{\{(\lambda ^{\prime },\lambda )\colon |\lambda ^{\prime }|>|\lambda |+k\}}\|\). The next lemma deals with the first task.

Lemma A.5

For \(k \in \mathbb {N}_{0}\) , it holds that

$$\begin{array}{@{}rcl@{}} \left\| \left| \left\langle \frac{{\Sigma}^{\mathscr{U}}}{\|{\Sigma}^{\mathscr{U}}\|_{H^{-1}({\Omega})}},{\Sigma}^{\mathscr{V}_{1}}\right\rangle_{L_{2}({\Omega})}|_{\{(\mu^{\prime},\mu)\colon |\mu^{\prime}|>|\mu|+k\}}\right| \right\| \lesssim 2^{-k/2},\\ \left\| \left| \left\langle \frac{\frac{\partial}{\partial x_{i}}{\Sigma}^{\mathscr{U}}}{\|{\Sigma}^{\mathscr{U}}\|_{H^{1}({\Omega})}},{\Sigma}^{a}\right\rangle_{L_{2}({\Omega})}|_{\{(\mu^{\prime},\mu)\colon |\mu^{\prime}|>|\mu|+k\}}\right| \right\| \lesssim 2^{-k/2}. \end{array} $$

Proof

For proving the first inequality, we split the matrix into Br + Bs, where Br contains all its entries \(\left \langle \frac {\sigma _{\mu ^{\prime }}^{\mathscr{U}}}{\|\sigma _{\mu ^{\prime }}^{\mathscr{U}}\|_{H^{-1}({\Omega })}},\sigma _{\mu }^{\mathscr{V}_{1}}\right \rangle _{L_{2}({\Omega })}\) for which \(\text {supp} \sigma ^{\mathscr{U}}_{\mu ^{\prime }}\) is contained in ω for some \(\omega \in \mathcal {O}_{\Omega }\) with |ω| = |μ| (the ‘regular’ entries), and where Bs contains the remaining (‘singular’) entries.

Thanks to (\({s}_{4}^{\mathscr{U}}\)), for the regular entries we can estimate

$$\begin{array}{@{}rcl@{}} |\langle \sigma_{\mu^{\prime}}^{\mathscr{U}},\sigma_{\mu}^{\mathscr{V}_{1}}\rangle_{L_{2}({\Omega})}| && \lesssim \|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{L_{1}({\Omega})} 4^{-|\mu^{\prime}|} |\sigma_{\mu}^{\mathscr{V}_{1}}|_{W_{\infty}^{2}(\text{supp}\sigma_{\mu^{\prime}}^{\mathscr{U}})}\\ && \lesssim 4^{-|\mu^{\prime}|} 2^{-|\mu^{\prime}|\frac{n}{2}} \|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{L_{2({\Omega})}} 2^{|\mu|} 2^{|\mu|\frac{n}{2}} \|\sigma_{\mu}^{\mathscr{V}_{1}}\|_{H^{1}({\Omega})}\\ && \eqsim 2^{(|\mu|-|\mu^{\prime}|)(1+\frac{n}{2})} \|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{H^{-1}({\Omega})} \end{array} $$

where we used \(\|\sigma _{\mu }^{\mathscr{V}_{1}}\|_{H^{1}({\Omega })} \eqsim 1\), and \(\|\sigma _{\mu ^{\prime }}^{\mathscr{U}}\|_{L_{2}({\Omega })}^{2} \leq \|\sigma _{\mu ^{\prime }}^{\mathscr{U}}\|_{H^{1}({\Omega })} \|\sigma _{\mu ^{\prime }}^{\mathscr{U}}\|_{H^{-1}({\Omega })}\lesssim 2^{|\mu ^{\prime }|} \|\sigma _{\mu ^{\prime }}^{\mathscr{U}}\|_{L_{2}({\Omega })}\|\sigma _{\mu ^{\prime }}^{\mathscr{U}}\|_{H^{-1}({\Omega })}\). An application of Lemma A.1 with ξ = n and ρ = 1 shows that \(\||B^{r}|\|\lesssim 2^{-k}\).

Since the wavelets \(\sigma _{\mu }^{\mathscr{V}_{1}}\) are piecewise polynomial functions in H1(Ω), they are contained in \(W_{\infty }^{1}({\Omega })\). Using (s4), for the remaining singular entries we estimate

$$\begin{array}{@{}rcl@{}} |\langle \sigma_{\mu^{\prime}}^{\mathscr{U}},\sigma_{\mu}^{\mathscr{V}_{1}}\rangle_{L_{2}({\Omega})}| &\lesssim& \|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{L_{1}({\Omega})} 2^{-|\mu^{\prime}|} |\sigma_{\mu}^{\mathscr{V}_{1}}|_{W_{\infty}^{1}(\text{supp}\sigma_{\mu^{\prime}}^{\mathscr{U}})}\\ &\eqsim& 2^{(|\mu|-|\mu^{\prime}|)\frac{n}{2}} \|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{H^{-1}({\Omega})} \end{array} $$

again by \(\|\sigma _{\mu }^{\mathscr{V}_{1}}\|_{H^{1}({\Omega })} \eqsim 1\), and \(\|\sigma _{\mu ^{\prime }}^{\mathscr{U}}\|_{L_{2}({\Omega })} \lesssim 2^{|\mu ^{\prime }|}\|\sigma _{\mu ^{\prime }}^{\mathscr{U}}\|_{H^{-1}({\Omega })}\) (cf. (4.9)). An application of Lemma A.1 with ξ = n − 1 and ρ = 1/2 shows that \(\||B^{s}|\|\lesssim 2^{-k/2}\).

Moving to the second inequality, we split the matrix into Br + Bs, where Br contains all its entries \(\left \langle \frac {\frac {\partial }{\partial x_{i}}\sigma _{\mu ^{\prime }}^{\mathscr{U}}}{\|\sigma _{\mu ^{\prime }}^{\mathscr{U}}\|_{H^{1}({\Omega })}},\sigma _{\mu }^{a}\right \rangle _{L_{2}({\Omega })}\) for which \(\text {supp}\sigma ^{\mathscr{U}}_{\mu ^{\prime }}\) is contained in ω ∩Ω for some \(\omega \in \mathcal {O}_{\Omega }\) with |ω| = |μ| (the ‘regular’ entries), and where Bs contains the remaining (‘singular’) entries.

Thanks to (s4), for the regular entries we can estimate

$$\begin{array}{@{}rcl@{}} |\langle \frac{\partial}{\partial x_{i}} {\sigma}_{\mu^{\prime}}^{\mathscr{U}},{\sigma}_{\mu}^{a}\rangle_{L_{2}({\Omega})}|= |\langle {\sigma}_{\mu^{\prime}}^{\mathscr{U}}, \frac{\partial}{\partial x_{i}} {\sigma}_{\mu}^{a}\rangle_{L_{2}({\Omega})}|\lesssim \|{\sigma}_{\mu^{\prime}}^{\mathscr{U}}\|_{L_{1}({\Omega})} 2^{-|\mu^{\prime}|} | {\sigma}_{\mu}^{a}|_{{W}_{\infty}^{2}(\text{supp} {\sigma}_{\mu^{\prime}}^{\mathscr{U}})}\\ \lesssim 4^{-|\mu^{\prime}|} 2^{-|\mu^{\prime}|\frac{n}{2}} \| {\sigma}_{\mu^{\prime}}^{\mathscr{U}}\|_{H^{1}({\Omega})} 4^{|\mu|} 2^{|\mu|\frac{n}{2}} \| {\sigma}_{\mu}^{a}\|_{L_{2}({\Omega})} \eqsim 2^{(|\mu|-|\mu^{\prime}|)(2+\frac{n}{2})} \| {\sigma}_{\mu^{\prime}}^{\mathscr{U}}\|_{H^{1}({\Omega})}, \end{array} $$

where we used that \(\|\sigma _{\mu ^{\prime }}^{\mathscr{U}}\|_{L_{2}({\Omega })} \lesssim 2^{-|\mu ^{\prime }|} \|\sigma _{\mu ^{\prime }}^{\mathscr{U}}\|_{H^{1}({\Omega })}\) (4.9). An application of Lemma A.1 with ξ = n and ρ = 2 shows that \(\||B^{r}|\|\lesssim 4^{-k}\).

For the remaining singular entries we estimate

$$\begin{array}{@{}rcl@{}} |\langle \frac{\partial}{\partial x_{i}} \sigma_{\mu^{\prime}}^{\mathscr{U}},\sigma_{\mu}^{a}\rangle_{L_{2}({\Omega})}| &\lesssim& \|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{{W^{1}_{1}}({\Omega})} \|\sigma_{\mu}^{a}\|_{L_{\infty}(\text{supp} \sigma_{\mu^{\prime}}^{\mathscr{U}})}\\ &\lesssim& 2^{(|\mu|-|\mu^{\prime}|)\frac{n}{2}} \|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{H^{1}({\Omega})} \|\sigma_{\mu}^{a}\|_{L_{2}(\text{supp}\sigma_{\mu^{\prime}}^{\mathscr{U}})}. \end{array} $$

An application of Lemma A.1 with ξ = n − 1 and ρ = 1/2 shows that \(\||B^{s}|\|\lesssim 2^{-k/2}\). □

Lemma A.6

For \(k \in \mathbb {N}_{0}\) , it holds that

$$\left\| \left| \left\langle \frac{({\Theta}^{\mathscr{U}})^{\prime}}{\|({\Theta}^{\mathscr{U}})^{\prime}\|_{L_{2}(\mathrm{I})}},{\Theta}^{\mathscr{V}_{1}}\right\rangle_{L_{2}(\mathrm{I})}|_{\{(\lambda^{\prime},\lambda) \colon |\lambda^{\prime}|>|\lambda|+k\}}\right| \right\| \lesssim 2^{-k/2}. $$

Proof

We split the matrix into Br + Bs, where Br contains all (‘regular’) entries \(\left \langle \frac {(\theta _{\lambda ^{\prime }}^{\mathscr{U}})^{\prime }}{\|(\theta _{\lambda ^{\prime }}^{\mathscr{U}})^{\prime }\|_{L_{2}(\mathrm {I})}},\theta _{\lambda }^{\mathscr{V}_{1}}\right \rangle _{L_{2}(\mathrm {I})}\) for which \(\text {supp} \theta ^{\mathscr{U}}_{\lambda ^{\prime }}\) is contained in ω ∩ I for some \(\omega \in \mathcal {O}_{\mathrm {I}}\) with |ω| = |λ| (so that in particular \(\theta ^{\mathscr{U}}_{\lambda ^{\prime }}\) vanishes on ∂I), and where Bs contains the remaining (‘singular’) entries.

For the regular entries, we can estimate

$$\begin{array}{@{}rcl@{}} |\langle (\theta_{\lambda^{\prime}}^{\mathscr{U}})^{\prime},\theta_{\lambda}^{\mathscr{V}_{1}}\rangle_{L_{2}(\mathrm{I})}| =|\langle \theta_{\lambda^{\prime}}^{\mathscr{U}},(\theta_{\lambda}^{\mathscr{V}_{1}})^{\prime}\rangle_{L_{2}(\mathrm{I})}| \lesssim \|\theta_{\lambda^{\prime}}^{\mathscr{U}}\|_{L_{1}(\mathrm{I})} 2^{-|\lambda^{\prime}|} \|\theta_{\lambda}^{\mathscr{V}_{1}}\|_{W_{\infty}^{2}(\text{supp}\theta_{\lambda^{\prime}}^{\mathscr{U}})}\\ \lesssim 2^{-|\lambda^{\prime}|/2} 2^{-|\lambda^{\prime}|} \|(\theta_{\lambda^{\prime}}^{\mathscr{U}})^{\prime}\|_{L_{2}(\mathrm{I})} 2^{-|\lambda^{\prime}|} 4^{|\lambda|} 2^{|\lambda|/2} \|\theta_{\lambda}^{\mathscr{V}_{1}}\|_{L_{2}(\mathrm{I})} \eqsim 2^{\frac{5}{2}(|\lambda|-|\lambda^{\prime}|)} \|(\theta_{\lambda^{\prime}}^{\mathscr{U}})^{\prime}\|_{L_{2}(\mathrm{I})}, \end{array} $$

where we used (t4), Poincaré’s inequality, an inverse inequality, and \(\|\theta _{\lambda }^{\mathscr{V}_{1}}\|_{L_{2}(\mathrm {I})} \eqsim 1\). An application of Lemma A.1 with ξ = 1 and ρ = 2 shows that \(\||B^{r}|\|\lesssim 4^{-k}\).

For the remaining singular entries, we estimate

$$\begin{array}{@{}rcl@{}} |\langle (\theta_{\lambda^{\prime}}^{\mathscr{U}})^{\prime},\theta_{\lambda}^{\mathscr{V}_{1}}\rangle_{L_{2}(\mathrm{I})}| \leq \|(\theta_{\lambda^{\prime}}^{\mathscr{U}})^{\prime}\|_{L_{1}(\mathrm{I})} \|\theta_{\lambda}^{\mathscr{V}_{1}}\|_{L_{\infty}(\mathrm{I})} \lesssim 2^{-\frac{1}{2}(|\lambda|-|\lambda^{\prime}|)} \|(\theta_{\lambda^{\prime}}^{\mathscr{U}})^{\prime}\|_{L_{2}(\mathrm{I})}. \end{array} $$

An application of Lemma A.1 with ξ = 0 and \(\rho =\frac {1}{2}\) shows that \(\||B^{s}|\|\lesssim 2^{-k/2}\). □

The following Corollary will be used to bound \(\|(\textbf {r}_{1}-{\tilde {\textbf {r}}}_{1})|_{\vee _{\mathscr{U}}}\|\).

Corollary A.7

Let \({\Lambda }^{\mathscr{V}_{1}} \subset \vee _{\mathscr{V}_{1}}\) be a multi-tree. Then for \(k \in \mathbb {N}_{0}\) ,

$$\left. \begin{array}{r} \| \langle \frac{\partial}{\partial t} {\Psi}^{\mathscr{U}}, {\Psi}^{\mathscr{V}_{1}}\rangle_{L_{2}(\mathrm{I}\times{\Omega})}|_{(\vee_{\mathscr{U}}\setminus \vee_{\mathscr{U}}({\Lambda}^{\mathscr{V}_{1}},k)) \times {\Lambda}^{\mathscr{V}_{1}} }\| \\ \| \langle b_{i}\frac{\partial}{\partial x_{i}} {\Psi}^{\mathscr{U}}, {\Psi}^{\mathscr{V}_{1}}\rangle_{L_{2}(\mathrm{I}\times{\Omega})}|_{(\vee_{\mathscr{U}}\setminus \vee_{\mathscr{U}}({\Lambda}^{\mathscr{V}_{1}},k)) \times {\Lambda}^{\mathscr{V}_{1}} }\|\\ \| \langle c {\Psi}^{\mathscr{U}}, {\Psi}^{\mathscr{V}_{1}}\rangle_{L_{2}(\mathrm{I}\times{\Omega})}|_{(\vee_{\mathscr{U}}\setminus \vee_{\mathscr{U}}({\Lambda}^{\mathscr{V}_{1}},k)) \times {\Lambda}^{\mathscr{V}_{1}} }\| \end{array} \right\} \lesssim 2^{-k/2}. $$

Proof

(a). From \(\|\theta ^{\mathscr{U}}_{\lambda } \otimes \sigma ^{\mathscr{U}}_{\mu }\|_{\mathscr{U}} \geq \|\theta ^{\mathscr{U}}_{\lambda }\|_{H^{1}(\mathrm {I})} \|\sigma ^{\mathscr{U}}_{\mu }\|_{H^{-1}({\Omega })}\), for the first inequality it is sufficient to prove that

$$\| \langle \frac{({\Theta}^{\mathscr{U}})^{\prime}}{\|{\Theta}^{\mathscr{U}}\|_{H^{1}(\mathrm{I})}} \otimes \frac{{\Sigma}^{\mathscr{U}}}{\|{\Sigma}^{\mathscr{U}}\|_{H^{-1}({\Omega})}}, {\Theta}^{\mathscr{V}_{1}}\otimes {\Sigma}^{\mathscr{V}_{1}}\rangle_{L_{2}(\mathrm{I}\times{\Omega})}|_{(\vee_{\mathscr{U}}\setminus \vee_{\mathscr{U}}({\Lambda}^{\mathscr{V}_{1}},k)) \times {\Lambda}^{\mathscr{V}_{1}} }\| \lesssim 2^{-k/2}. $$

From \({\Theta }^{\mathscr{U}} / \|{\Theta }^{\mathscr{U}}\|_{H^{1}(\mathrm {I})}\), \({\Theta }^{\mathscr{V}_{1}}\), \({\Sigma }^{\mathscr{U}} / \|{\Sigma }^{\mathscr{U}}\|_{H^{-1}({\Omega })}\), and \({\Sigma }^{\mathscr{V}_{1}}\) being Riesz bases for H1(I), L2(I), H− 1(Ω), and \({H^{1}_{0}}({\Omega })\), we have

$$\begin{array}{@{}rcl@{}} \left\langle \frac{({\Theta}^{\mathscr{U}})^{\prime}}{\|{\Theta}^{\mathscr{U}}\|_{H^{1}(\mathrm{I})}},{\Theta}^{\mathscr{V}_{1}}\right\rangle_{L_{2}(\mathrm{I})} &\in \mathcal{L}(\ell_{2}(\lhd_{\mathscr{V}_{1}}),\ell_{2}(\lhd_{\mathscr{U}})),\\ \left\langle \frac{{\Sigma}^{\mathscr{U}}}{\|{\Sigma}^{\mathscr{U}}\|_{H^{-1}({\Omega})}},{\Sigma}^{\mathscr{V}_{1}}\right\rangle_{L_{2}({\Omega})} &\in \mathcal{L}(\ell_{2}(\Diamond_{\mathscr{V}_{1}}),\ell_{2}(\Diamond_{\mathscr{U}})). \end{array} $$

The proof of the first inequality is completed by applications of Proposition A.4 and Lemmata A.5(first statement)–A.6.

(b). From \(\text {span} \frac {\partial }{\partial x_{i}} b_{i} {\Psi }^{\mathscr{V}_{1}}|_{{\Lambda }^{\mathscr{V}_{1}}} \subset \text {span} {\Psi }^{a}|_{\vee _{a}({\Lambda }^{\mathscr{V}_{1}},0)}\) (similar to Lemma 4.16), for \(\textbf {c} \in \ell _{2}({\Lambda }^{\mathscr{V}_{1}})\) there exists a \(\textbf {d} \in \ell _{2}(\vee _{a}({\Lambda }^{\mathscr{V}_{1}},0))\) such that

$$\begin{array}{@{}rcl@{}} \langle b_{i}\frac{\partial}{\partial x_{i}} {\Psi}^{\mathscr{U}}, {\Psi}^{\mathscr{V}_{1}}\rangle_{L_{2}(\mathrm{I}\times{\Omega})} \textbf{c} &=&\langle {\Psi}^{\mathscr{U}}, -\textbf{c}^{\top} \frac{\partial}{\partial x_{i}} (b_{i} {\Psi}^{\mathscr{V}_{1}})\rangle_{L_{2}(\mathrm{I}\times{\Omega})} \\ &=&\langle {\Psi}^{\mathscr{U}}, \textbf{d}^{\top} {\Psi}^{a}\rangle_{L_{2}(\mathrm{I}\times{\Omega})} =\langle {\Psi}^{\mathscr{U}}, {\Psi}^{a}\rangle_{L_{2}(\mathrm{I}\times{\Omega})} \textbf{d}, \end{array} $$

where

$$\|\textbf{d}\| \eqsim \|\textbf{d}^{\top} {\Psi}^{a}\|_{L_{2}(\mathrm{I} \times {\Omega})}= \|\textbf{c}^{\top} \frac{\partial}{\partial x_{i}} (b_{i} {\Psi}^{\mathscr{V}_{1}})\|_{L_{2}(\mathrm{I} \times {\Omega})} \lesssim \|\textbf{c}\|. $$

From \(\|\theta ^{\mathscr{U}}_{\lambda } \otimes \sigma ^{\mathscr{U}}_{\mu }\|_{\mathscr{U}} \geq \|\theta ^{\mathscr{U}}_{\lambda }\|_{L_{2}(\mathrm {I})} \|\sigma ^{\mathscr{U}}_{\mu }\|_{H^{1}({\Omega })}\), \(\vee _{\mathscr{U}}({\Lambda }^{\mathscr{V}_{1}},k)=\vee _{\mathscr{U}}(\vee _{a}\)\(({\Lambda }^{\mathscr{V}_{1}},0),k)\) it remains to be proven that

$$\begin{array}{@{}rcl@{}} &&\!\!\!\| \langle \frac{{\Theta}^{\mathscr{U}}}{\|{\Theta}^{\mathscr{U}}\|_{L_{2}(\mathrm{I})}} \otimes \frac{\frac{\partial}{\partial x_{i}} {\Sigma}^{\mathscr{U}}}{\|{\Sigma}^{\mathscr{U}}\|_{H^{1}({\Omega})}}, {\Theta}^{a}\otimes {\Sigma}^{a}\rangle_{L_{2}(\mathrm{I}\times{\Omega})}|_{(\vee_{\mathscr{U}}\setminus \vee_{\mathscr{U}}(\vee_{a}({\Lambda}^{\mathscr{V}_{1}},0),k)) \times \vee_{a}({\Lambda}^{\mathscr{V}_{1}},0) }\|\\&&\!\!\! \lesssim 2^{-k/2}. \end{array} $$

Indeed, this gives

$$\begin{array}{@{}rcl@{}} &&\left\|\left( \langle b_{i}\frac{\partial}{\partial x_{i}} {\Psi}^{\mathscr{U}}, {\Psi}^{\mathscr{V}_{1}}\rangle_{L_{2}(\mathrm{I}\times{\Omega})} \textbf{c}\right)\right\|_{\vee_{\mathscr{U}} \setminus \vee_{\mathscr{U}}({\Lambda}^{\mathscr{V}_{1}},k)}\|\\ &&=\|\left( \langle {\Psi}^{\mathscr{U}}, {\Psi}^{a}\rangle_{L_{2}(\mathrm{I}\times{\Omega})} \textbf{d}\right)\left|\right._{\vee_{\mathscr{U}} \setminus \vee_{\mathscr{U}}({\Lambda}^{\mathscr{V}_{1}},k)}\| \lesssim 2^{-k/2} \|\textbf{d}\|\lesssim 2^{-k/2} \|\textbf{c}\|, \end{array} $$

showing the second inequality.

From \({\Theta }^{\mathscr{U}} / \|{\Theta }^{\mathscr{U}}\|_{L_{2}(\mathrm {I})}\), Θa, \({\Sigma }^{\mathscr{U}} / \|{\Sigma }^{\mathscr{U}}\|_{H^{1}({\Omega })}\), and Σa being Riesz bases for L2(I), L2(I), \({H_{0}^{1}}({\Omega })\), and L2(Ω), we have

$$\begin{array}{@{}rcl@{}} \left\langle \frac{{\Theta}^{\mathscr{U}}}{\|{\Theta}^{\mathscr{U}}\|_{L_{2}(\mathrm{I})}},{\Theta}^{a}\right\rangle_{L_{2}(\mathrm{I})} &\in \mathcal{L}(\ell_{2}(\lhd_{a}),\ell_{2}(\lhd_{\mathscr{U}})),\\ \left\langle \frac{\frac{\partial}{\partial x_{i}}{\Sigma}^{\mathscr{U}}}{\|{\Sigma}^{\mathscr{U}}\|_{H^{1}({\Omega})}},{\Sigma}^{a}\right\rangle_{L_{2}({\Omega})} &\in \mathcal{L}(\ell_{2}(\Diamond_{\mathscr{V}_{a}}),\ell_{2}(\Diamond_{\mathscr{U}})). \end{array} $$

The proof of the remaining inequality is completed by applications of Proposition A.4, Lemma A.2 for \(({\Theta }^{*},{\Theta }^{\circ })=(\frac {{\Theta }^{\mathscr{U}}}{\|{\Theta }^{\mathscr{U}}\|_{L_{2}(\mathrm {I})}},{\Theta }^{a})\), and the second statement from Lemma A.5.

(c). A subset of the arguments that showed the second inequality gives the third one. □

Lemma A.8

For\(k \in \mathbb {N}_{0}\)and 1 ≤ i ≤ n, it holdsthat

$$\left\| \left| \left\langle {\Sigma}^{\mathscr{P}},\partial_{i} {\Sigma}^{\mathscr{V}_{1}}\right\rangle_{L_{2}({\Omega})^{n}}|_{\{(\mu^{\prime},\mu)\colon |\mu^{\prime}|>|\mu|+k\}}\right| \right\| \lesssim 2^{-k/2},\\ $$

Proof

We split the matrix into Br + Bs, where Br contains all its entries \(\left \langle \sigma _{\mu ^{\prime }}^{\mathscr{P}},\right .\!\!\)\(\left .\partial _{i} \sigma _{\mu }^{\mathscr{V}_{1}}\right \rangle _{L_{2}({\Omega })^{n}}\) for which \(\text {supp} \sigma ^{\mathscr{P}}_{\mu ^{\prime }}\) is contained in ω ∩Ω for some \(\omega \in \mathcal {O}_{\Omega }\) with |ω| = |μ| (the ‘regular’ entries), and where Bs contains the remaining (‘singular’) entries.

For the regular entries using (s4) we can estimate

$$\begin{array}{@{}rcl@{}} |\langle \sigma_{\mu^{\prime}}^{\mathscr{P}},\partial_{i} \sigma_{\mu}^{\mathscr{V}_{1}}\rangle_{L_{2}({\Omega})^{n}}| &\lesssim& \|\sigma_{\mu^{\prime}}^{\mathscr{P}}\|_{L_{1}({\Omega})^{n}} 2^{-|\mu^{\prime}|} |\sigma_{\mu}^{\mathscr{V}_{1}}|_{W_{\infty}^{2}(\text{supp}\sigma_{\mu^{\prime}}^{\mathscr{P}})}\\ &\eqsim& 2^{(|\mu|-|\mu^{\prime}|)(1+\frac{n}{2})} \end{array} $$

An application of Lemma A.1 with ξ = n and ρ = 1 shows that \(\||B^{r}|\|\lesssim 2^{-k}\).

Since the wavelets \(\sigma _{\mu }^{\mathscr{V}_{1}}\) are piecewise polynomial, and functions in H1(Ω), they are contained in \(W_{\infty }^{1}({\Omega })\). For the remaining singular entries we estimate

$$|\langle \sigma_{\mu^{\prime}}^{\mathscr{P}},\partial_{i} \sigma_{\mu}^{\mathscr{V}_{1}}\rangle_{L_{2}({\Omega})^{n}}| \lesssim \|\sigma_{\mu^{\prime}}^{\mathscr{P}}\|_{L_{1}({\Omega})^{n}} |\sigma_{\mu}^{\mathscr{V}_{1}}|_{W_{\infty}^{1}(\text{supp} \sigma_{\mu^{\prime}}^{\mathscr{P}})} \lesssim 2^{(|\mu|-|\mu^{\prime}|)\frac{n}{2}}. $$

An application of Lemma A.1 with ξ = n − 1 and ρ = 1/2 shows that \(\||B^{s}|\|\lesssim 2^{-k/2}\). □

The following Corollary will be used to bound \(\|(\textbf {r}_{1}-{\tilde {\textbf {r}}}_{1})|_{\vee _{\vec {\mathscr{P}}}}\|\).

Corollary A.9

Let \({\Lambda }^{\mathscr{V}_{1}} \subset \vee _{\mathscr{V}_{1}}\) be a multi-tree. Then for \(k \in \mathbb {N}_{0}\) ,

$$\left\| \langle {\Psi}^{\vec{\mathscr{P}}}, \nabla_{x} {\Psi}^{\mathscr{V}_{1}}\rangle_{L_{2}(\mathrm{I}\times{\Omega})^{n}}|_{(\vee_{\vec{\mathscr{P}}} \setminus \vee_{\vec{\mathscr{P}}}({\Lambda}^{\mathscr{V}_{1}},k)) \times {\Lambda}^{\mathscr{V}_{1}} }\right\| \lesssim 2^{-k/2}. $$

Proof

Using Lemma A.2 for \(({\Theta }^{*},{\Theta }^{\circ })=({\Theta }^{\mathscr{P}},{\Theta }^{\mathscr{V}_{1}})\), Lemma A.8, \(\langle {\Theta }^{\mathscr{P}}, {\Theta }^{\mathscr{V}_{1}}\rangle _{L_{2}(\mathrm {I})} \in \mathcal {L}(\lhd _{\mathscr{V}_{1}},\lhd _{\mathscr{P}})\), and \(\langle {\Sigma }^{\mathscr{P}}, \partial _{i} {\Sigma }^{\mathscr{V}_{1}}\rangle _{L_{2}({\Omega })^{n}} \in \mathcal {L}(\Diamond _{\mathscr{V}_{1}},\Diamond _{\mathscr{P}})\), the proof follows from Proposition A.4. □

Lemma A.10

For\(k \in \mathbb {N}_{0}\),1 ≤ i ≤ n,it holds that

$$\begin{array}{@{}rcl@{}} \left\| \left| \left\langle \frac{\nabla {\Sigma}^{\mathscr{U}}}{\|{\Sigma}^{\mathscr{U}}\|_{H^{1}({\Omega})}}, {\Sigma}^{a} \textbf{e}_{i} \right\rangle_{L_{2}({\Omega})^{n}}|_{\{(\mu^{\prime},\mu)\colon |\mu^{\prime}|>|\mu|+k\}}\right| \right\| &\lesssim& 2^{-k/2},\\ \left\| \langle {\Sigma}^{\mathscr{P}}, {\Sigma}^{a} \rangle_{L_{2}({\Omega})^{n}}|_{\{(\mu^{\prime},\mu)\colon |\mu^{\prime}|>|\mu|+k\}}\right\| &\lesssim& 2^{-k/2}. \end{array} $$

Proof

For proving the first inequality, we split the matrix into Br + Bs, where Br contains all its entries \(\left \langle \frac {\nabla \sigma _{\mu ^{\prime }}^{\mathscr{U}}}{\|\sigma _{\mu ^{\prime }}^{\mathscr{U}}\|_{H^{1}({\Omega })}}, \sigma _{\mu }^{a} \textbf {e}_{i} \right \rangle _{L_{2}({\Omega })^{n}}\) for which \(\text {supp} \sigma ^{\mathscr{U}}_{\mu ^{\prime }}\) is contained in ω ∩Ω for some \(\omega \in \mathcal {O}_{\Omega }\) with |ω| = |μ| (the ‘regular’ entries), and where Bs contains the remaining (‘singular’) entries.

For the regular entries, using (s4) and the first inequality in (4.9), we estimate

$$\begin{array}{@{}rcl@{}} &&\left| \left\langle \frac{\partial_{i} \sigma_{\mu^{\prime}}^{\mathscr{U}}}{\|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{H^{1}({\Omega})}}, \sigma_{\mu}^{a} \right\rangle_{L_{2}({\Omega})^{n}}\left|\vphantom{\left\langle \frac{\partial_{i} \sigma_{\mu^{\prime}}^{\mathscr{U}}}{\|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{H^{1}({\Omega})}}, \sigma_{\mu}^{a} \right\rangle_{L_{2}({\Omega})^{n}}} ={\kern-.5pt} \right| \left\langle \frac{\sigma_{\mu^{\prime}}^{\mathscr{U}}}{\|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{H^{1}({\Omega})}}, \partial_{i} \sigma_{\mu}^{a} \right\rangle_{L_{2}({\Omega})^{n}}\right|\\ &&\lesssim 2^{-|\mu^{\prime}|} \frac{\|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{L_{1}({\Omega})}}{\|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{H^{1}({\Omega})}} |\sigma^{a}_{\mu}|_{W^{2}(\text{supp} \sigma_{\mu^{\prime}}^{\mathscr{U}})} \lesssim 2^{-|\mu^{\prime}|}2^{-|\mu^{\prime}|n/2} 2^{-|\mu^{\prime}|} 2^{|\mu|n/2} 2^{2|\mu|}\\&&= 2^{(2+n/2)(|\mu^{\prime}|-|\mu|)}. \end{array} $$

An application of Lemma A.1 with ξ = n and ρ = 2 shows that \(\|B^{r}\|\lesssim 4^{-k}\).

For the singular entries, we estimate

$$ \left|\left\langle \frac{\partial_{i} \sigma_{\mu^{\prime}}^{\mathscr{U}}}{\|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{H^{1}({\Omega})}}, \sigma_{\mu}^{a} \right\rangle_{L_{2}({\Omega})^{n}}\right| \lesssim \frac{\|\partial_{i} \sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{L_{1}({\Omega})}}{\|\sigma_{\mu^{\prime}}^{\mathscr{U}}\|_{H^{1}({\Omega})}} \|\sigma^{a}_{\mu}\|_{L_{\infty}({\Omega})} \lesssim 2^{(|\mu^{\prime}|-|\mu|)n/2}. $$
(3)

An application of Lemma A.1 with ξ = n − 1 and ρ = 1/2 shows that \(\||B^{s}|\|\lesssim 2^{-k/2}\).

The proof of the second inequality proceeds along the by now well-known steps. Using assumption (s4) on \({\Sigma }^{\mathscr{P}}\) one shows that \(\||B^{r}|\|\lesssim 2^{-k}\), whereas \(\||B^{s}|\|\lesssim 2^{-k/2}\). □

The following Corollary will be used to bound \(\|\textbf {r}_{3}-{\tilde {\textbf {r}}}_{3}\|\).

Corollary A.11

Let Λa ⊂∨abe a multi-tree. Thenfor\(k \in \mathbb {N}_{0}\),

$$\left\| \langle \nabla_{x}{\Psi}^{\mathscr{U}}, {\Psi}^{a} \textbf{e}_{i} \rangle_{L_{2}(\mathrm{I}\times{\Omega})^{n}}|_{(\vee_{\mathscr{U}} \setminus \vee_{\mathscr{U}}({\Lambda}^{a},k)) \times {\Lambda}^{a} }\right\| \lesssim 2^{-k/2}. $$
$$\left\| \langle {\Psi}^{\vec{\mathscr{P}}}, {\Psi}^{a} \textbf{e}_{i} \rangle_{L_{2}(\mathrm{I}\times{\Omega})^{n}}|_{(\vee_{\vec{\mathscr{P}}} \setminus \vee_{\vec{\mathscr{P}}}({\Lambda}^{a},k)) \times {\Lambda}^{a} }\right\| \lesssim 2^{-k/2}. $$

Proof

From \(\|\theta ^{\mathscr{U}}_{\lambda } \otimes \sigma ^{\mathscr{U}}_{\mu }\|_{\mathscr{U}} \geq \|\theta ^{\mathscr{U}}_{\lambda }\|_{L_{2}(\mathrm {I})} \|\sigma ^{\mathscr{U}}_{\mu }\|_{H^{1}({\Omega })}\), in order to prove the first result it suffices to show that

$$\left\| \left \langle \frac{{\Theta}^{\mathscr{U}}}{\|{\Theta}^{\mathscr{U}}\|_{L_{2}(\mathrm{I})}} \otimes \frac{\nabla {\Sigma}^{\mathscr{U}}}{\|{\Sigma}^{\mathscr{U}}\|_{H^{1}({\Omega})}}, {\Theta}^{a} \otimes {\Sigma}^{a} \textbf{e}_{i}\right\rangle_{L_{2}(\mathrm{I}\times{\Omega})^{n}}|_{\vee_{\mathscr{U}} \setminus \vee_{\mathscr{U}}({\Lambda}^{a},k) \times {\Lambda}^{a} }\right\| \lesssim 2^{-k/2}. $$

This and the second result follow from applications of Proposition A.4, Lemma A.2, and Lemma A.10. □

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekatsinas, N., Stevenson, R. An optimal adaptive tensor product wavelet solver of a space-time FOSLS formulation of parabolic evolution problems. Adv Comput Math 45, 1031–1066 (2019). https://doi.org/10.1007/s10444-018-9644-2

Download citation

  • Received: 05 January 2018

  • Accepted: 10 October 2018

  • Published: 23 November 2018

  • Issue Date: 02 April 2019

  • DOI: https://doi.org/10.1007/s10444-018-9644-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Parabolic PDEs
  • Space-time variational formulation
  • First order system least squares
  • Adaptive wavelet solver
  • Optimal rates
  • Linear complexity

Mathematics Subject Classification (2010)

  • 35K20
  • 41A25
  • 41A63
  • 42C40
  • 65N12
  • 65T60
  • 65N30
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature