Skip to main content
Log in

POD reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The main focus of the present work is the inclusion of spatial adaptivity for the snapshot computation in the offline phase of model order reduction utilizing proper orthogonal decomposition (POD-MOR) for nonlinear parabolic evolution problems. We consider snapshots which live in different finite element spaces, which means in a fully discrete setting that the snapshots are vectors of different length. From a numerical point of view, this leads to the problem that the usual POD procedure which utilizes a singular value decomposition of the snapshot matrix, cannot be carried out. In order to overcome this problem, we here construct the POD model/basis using the eigensystem of the correlation matrix (snapshot Gramian), which is motivated from a continuous perspective and is set up explicitly, e.g., without the necessity of interpolating snapshots into a common finite element space. It is an advantage of this approach that the assembly of the matrix only requires the evaluation of inner products of snapshots in a common Hilbert space. This allows a great flexibility concerning the spatial discretization of the snapshots. The analysis for the error between the resulting POD solution and the true solution reveals that the accuracy of the reduced-order solution can be estimated by the spatial and temporal discretization error as well as the POD error. Finally, to illustrate the feasibility of our approach, we present a test case of the Cahn–Hilliard system utilizing h-adapted hierarchical meshes and two settings of a linear heat equation using nested and non-nested grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H.: Diffuse Interface Models for Two-Phase flows of Viscous Incompressible Fluids. Max-Planck Institut für Mathematik in den Naturwissenschaften, p 36. Lecture Note, Leipzig (2007)

    Google Scholar 

  2. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 40 (2012)

    Article  MathSciNet  Google Scholar 

  3. Afanasiev, K., Hinze, M.: Adaptive Control of a Wake Flow using Proper Orthogonal Decomposition. Shape Optimization and Optimal Design (Cambridge, 1999), Lecture Notes in Pure and Appl. Math., vol. 216, pp 317–332. Dekker, New York (2001)

    MATH  Google Scholar 

  4. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis, p. 37. Wiley (2011)

  5. Ali, M., Steih, K., Urban, K.: Reduced basis methods based upon adaptive snapshot computations. Adv. Comput. Math. 43(2), 257–294 (2017)

    Article  MathSciNet  Google Scholar 

  6. Alla, A., Kutz, J.N.: Nonlinear model order reduction via dynamic mode decomposition. SIAM J. Sci. Comput. 39(5), 778–796 (2017)

    Article  MathSciNet  Google Scholar 

  7. Alnaes, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 100(3), 9–23 (2015)

    Google Scholar 

  8. Astrid, P., Weiland, S., Willcox, K., Backx, T.: Missing point estimation in models described by proper orthogonal decompostion. IEE Trans. Automat. Control 53(10), 2237–2251 (2008)

    Article  Google Scholar 

  9. Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part I: Math. Anal. Eur. J. Appl. Math. 2, 233–280 (1991)

    MATH  Google Scholar 

  10. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An “empirical interpolation” method: Application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris, Ser. I(339), 667–672 (2004)

    Article  MathSciNet  Google Scholar 

  11. Benner, P., Rannacher, R.: Introduction to part III adaptivity and model reduction. Trends in PDE constrained optimization. Int. Ser. Numer. Math. 165, 249–250 (2014)

    Article  Google Scholar 

  12. Chen, Y.: Model order reduction for nonlinear systems. Master’s thesis Massachusetts Institute of Technology (1999)

  13. Chen, L.: An innovative finite element method package in Matlab Preprint, University of Maryland (2008)

  14. Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  15. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. Siam J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MathSciNet  Google Scholar 

  16. Drmac, Z., Gugercin, S.: A new selection operator for the discrete empirical interpolation method – improved a priori error bound and extension. SIAM J. Sci. Comput. 38(2), A631–A648 (2016)

    Article  MathSciNet  Google Scholar 

  17. Eyre, D.J.: Unconditionally Gradient Stable Time Marching the Cahn–Hilliard Equation. MRS Proc., p. 529 (1998)

  18. Fang, F., Pain, C.C., Navon, I.M., Piggott, M.D., Gorman, G.J., Allison, P.A., Goddard, A.J.: Reduced-order modelling of an adaptive mesh ocean model. Int. J. Numer. Meth. Fluids 59, 827–851 (2009)

    Article  MathSciNet  Google Scholar 

  19. Feng, L., Zeng, X., Chiang, C., Zhou, D., Fang, Q.: Direct nonlinear order reduction with variational analysis. In: Proc. Design, Automation and Test in Europe, pp. 1530–1591 (2004)

  20. Gubisch, M., Volkwein, S.: Proper orthogonal decomposition for linear-quadratic optimal control. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms, vol. 5–66. SIAM, Philadelphia (2017)

  21. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435–479 (1977)

    Article  Google Scholar 

  22. Hintermüller, M., Hinze, M., Tber, M.H.: An adaptive finite element Moreau–Yosida-based solver for a non-smooth Cahn–Hilliard problem. Optim. Meth. Softw. 26, 777–811 (2011)

    Article  MathSciNet  Google Scholar 

  23. Hinze, M., Kunisch, K.: Three control methods for time-dependent fluid flow. Flow, Turbul. Combust. 65, 273–298 (2000)

    Article  MathSciNet  Google Scholar 

  24. Hinze, M., Krenciszek, J., Pinnau, R: Proper orthogonal decomposition for free boundary value problems. Hamburger Beiträge zur Angewandten Mathematik (2014)

  25. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics, Cambridge University Press (2012)

  26. Hinze, M., Volkwein, S.: Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Technical Report IMA02-05 KFU Graz (2005)

  27. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer-Verlag, Berlin (2009)

    MATH  Google Scholar 

  28. Kunisch, K., Volkwein, S.: Control of Burgers’ equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102, 345–371 (1999)

    Article  MathSciNet  Google Scholar 

  29. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90, 117–148 (2001)

    Article  MathSciNet  Google Scholar 

  30. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002)

    Article  MathSciNet  Google Scholar 

  31. Lass, O.: Reduced-order modeling and parameter identification for coupled nonlinear PDE systems. PhD thesis Universität Konstanz (2014)

  32. Logg, A., Mardal, K. -A., Wells, G. (eds.): Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Book, vol. 84. Springer, New York (2012)

  33. Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Model order reduction in fluid dynamics: challenges and perspectives. In: Quarteroni, A., Rozza, G. (eds.) Reduced Order Methods for Modeling and Computational Reduction, vol. 9, pp. 235-274. Springer MS&A Series (2014)

  34. Lee, Y.T., Requicha, A.A.: Algorithms for computing the volume and other integral properties of solids. I. Known methods and open issues. Commun. ACM 25 (9), 635–641 (1982)

    Article  MathSciNet  Google Scholar 

  35. Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarski, V.I. (eds.) Atmospheric Turbulence and Radio Propagation, pp 166–178, Nauka (1967)

  36. Massing, A., Larson, M., Logg, A.: Efficient implementation of finite element methods on nonmatching and overlapping meshes in three dimensions. SIAM J. Sci. Comput. 35(1), C.23-C.47 (2013)

    Article  MathSciNet  Google Scholar 

  37. Mirtich, B.: Fast and accurate computation of polyhedral mass properties. J. Graph. Tools 1(2), 31–50 (1996)

    Article  Google Scholar 

  38. Nguyen, N.C., Patera, A.T., Peraire, J.: A “best point” interpolation method for efficient approximation of parametrized functions. Int. J. Numer. Meth. Eng. 73 (4), 521–543 (2008)

    Article  MathSciNet  Google Scholar 

  39. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  40. Phillips, J.R.: Automated extraction of nonlinear circuit macromodels. In: Proc. Custom Integrated Circuit Conf., pp. 451–454 (2000)

  41. Phillips, J.R.: Projection-based approaches for model reduction of weakly nonlinear, time-varying systems. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 22(2) (2003)

    Article  Google Scholar 

  42. Pinnau, R.: Model reduction via proper orthogonal decomposition. In: Schilder, W.H.A., van der Vorst, H. (eds.) Model Order Reduction: Theory, Research Aspects and Applications, pp 96–109. Springer (2008)

  43. Raymond, J.P., Zidani, H.: Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39, 143–177 (1999)

    Article  MathSciNet  Google Scholar 

  44. Reed, M., Simon, B.: Methods of modern mathematical physics. I: Functional analysis. Academic Press (1980)

  45. Rewieński, M., White, J.: A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. Comput.-Aided Des. Integrat. Circuits Syst., 22(2) (2003)

    Article  Google Scholar 

  46. Schmidt, A., Siebert, K.G.: Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA. Lecture Notes in Computational Science and Engineering, p. 42. Springer (2005)

  47. Singler, J.R.: New POD error expressions, error bounds, and asymptotic results for reduced order model of parabolic PDEs. SIAM J. Numer. Anal. 52(2), 852–876 (2014)

    Article  MathSciNet  Google Scholar 

  48. Sirovich, L.: Turbulence and the dynamics of coherent structures. Parts I-II. Quart. Appl. Math. XVL, 561–590 (1987)

    Article  Google Scholar 

  49. Ullmann, S., Rotkvic, M., Lang, J.: POD-Galerkin reduced-order modeling with adaptive finite element snapshots. J. Comput. Phys. 325, 244–258 (2016)

    Article  MathSciNet  Google Scholar 

  50. Volkwein, S.: Optimal control of a phase-field model using proper orthogonal decomposition. Z. Angew. Math. Mech. 81(2), 83–97 (2001)

    Article  MathSciNet  Google Scholar 

  51. Volkwein, S.: Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling, University of Konstanz, Lecture Notes (2013)

  52. Whang, Z.: Nonlinear model reduction based on the finite element method with interpolated coefficients: Semilinear parabolic equations. Numer. Meth. Partial. Diff. Eqs. 31(6), 1713–1741 (2015)

    Article  MathSciNet  Google Scholar 

  53. Yagi, A.: Abstract Parabolic Evolution Equations and their Applications. Springer Monographs in Mathematics (2010)

  54. Yano, M.: A minimum-residual mixed reduced basis method: Exact residual certification and simultaneous finite-element reduced-basis refinement. ESAIM: M2AN 50(1), 163–185 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We like to thank Christian Kahle for providing many C++ libraries which we could use for the coding. The authors gratefully acknowledge the financial support by the Deutsche Forschungsgemeinschaft through the priority program SPP1962 entitled “Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Gräßle.

Additional information

Communicated by: Peter Benner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gräßle, C., Hinze, M. POD reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations. Adv Comput Math 44, 1941–1978 (2018). https://doi.org/10.1007/s10444-018-9620-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9620-x

Keywords

Mathematics Subject Classification (2010)

Navigation