Advertisement

Advances in Computational Mathematics

, Volume 45, Issue 1, pp 243–267 | Cite as

Tetration for complex bases

  • William PaulsenEmail author
Article
  • 35 Downloads

Abstract

In this paper we will consider the tetration, defined by the equation F(z + 1) = bF(z) in the complex plane with F(0) = 1, for the case where b is complex. A previous paper determined conditions for a unique solution the case where b is real and b > e1/e. In this paper we extend these results to find conditions which determine a unique solution for complex bases. We also develop iteration methods for numerically approximating the function F(z), both for bases inside and outside the Shell-Thron region.

Keywords

Tetration Abel’s functional equation Iteration 

Mathematics Subject Classification (2010)

26A18 30D05 39B12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kneser, H.: Reelle analytishe Lösungen der Gleichung φ(φ(x)) = e x und verwandter Funktionalgleichungen. J. reine angew. Math. 187, 56–67 (1950)Google Scholar
  2. 2.
    Lawrence, P. W., Corless, R. M., Jeffrey, D. J.: Algorithm 917: Complex double-precision evaluation of the wright omega function. ACM Trans. Math. Softw. 38, 3, 20 (2012). 1–17CrossRefzbMATHGoogle Scholar
  3. 3.
    Paulsen, W., Cowgill, S.: Solving F(z + 1) = b F(z) in the complex plane. Adv. Comput. Math. 43 (6), 1261–1282 (2017).  https://doi.org/10.1007/s10444-017-9524-1 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kouznetsov, D.: Solution of F(z + 1) = exp(F(z)) in the complex z-plane. Math. Comput. 78(267), 1647–1670 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Trappmann, H., Kouznetsov, D.: Computation of the two regular super-exponentials to base e 1/e. Math. Comput. 81, 2207–2227 (2012).  https://doi.org/10.1090/S0025-5718-2012-02590-7 CrossRefzbMATHGoogle Scholar
  6. 6.
    Mathematics Stack Exchange, What is i exponentiated to itself i times? (2013), https://math.stackexchange.com/questions/280251
  7. 7.
    Kouznetsov, D., Trappmann, H.: Portrait of the four regular super-exponentials to base sqrt(2). Math. Comput. 79, 1727–1756 (2010).  https://doi.org/10.1090/S0025-5718-10-02342-2 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Doyle, A.C.: The Sign of Four. The Complete Sherlock Holmes. Garden City Publishing Company, New York (1938)Google Scholar
  9. 9.
    Levenson, S: Complex base tetration program. Tetration and Related Topics. Tetration Forum. http://math.eretrandre.org/tetrationforum/showthread.php?tid=729 (2012)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Arkansas State UniversityJonesboroUSA

Personalised recommendations