Damping optimization of parameter dependent mechanical systems by rational interpolation

  • Zoran Tomljanović
  • Christopher Beattie
  • Serkan Gugercin
Article
  • 7 Downloads

Abstract

We consider an optimization problem related to semi-active damping of vibrating systems. The main problem is to determine the best damping matrix able to minimize influence of the input on the output of the system. We use a minimization criteria based on the \(\mathcal {H}_{2}\) system norm. The objective function is non-convex and the associated optimization problem typically requires a large number of objective function evaluations. We propose an optimization approach that calculates ‘interpolatory’ reduced order models, allowing for significant acceleration of the optimization process. In our approach, we use parametric model reduction (PMOR) based on the Iterative Rational Krylov Algorithm, which ensures good approximations relative to the \(\mathcal {H}_{2}\) system norm, aligning well with the underlying damping design objectives. For the parameter sampling that occurs within each PMOR cycle, we consider approaches with predetermined sampling and approaches using adaptive sampling, and each of these approaches may be combined with three possible strategies for internal reduction. In order to preserve important system properties, we maintain second-order structure, which through the use of modal coordinates, allows for very efficient implementation. The methodology proposed here provides a significant acceleration of the optimization process; the gain in efficiency is illustrated in numerical experiments.

Keywords

Model reduction Interpolation Second-order systems Semi-active damping 

Mathematics Subject Classification (2010)

49J15 74P10 70Q05 41A05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afanasiev, K., Hinze, M.: Adaptive control of a wake flow using proper orthogonal decomposition. Shape Optimization and Optimal Design, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker 216, 317–332 (2001)MathSciNetMATHGoogle Scholar
  2. 2.
    Alexandrov, N., Dennis, J., Lewis, R., Torczon, V.: A trust-region framework for managing the use of approximation models in optimization. Struct. Multidiscip. Optim. 15(1), 16–23 (1998)CrossRefGoogle Scholar
  3. 3.
    Antoulas, A.: Approximation of Large-Scale dynamical systems. SIAM publications, Philadelphia (2005)CrossRefMATHGoogle Scholar
  4. 4.
    Antoulas, A., Beattie, C., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems. In: Efficient modeling and control of large-scale systems, pp. 3–58. Springer (2010)Google Scholar
  5. 5.
    Antoulas, A.C., Sorensen, D.C., Gugercin, S.: A survey of model reduction methods for large-scale systems. Contemp. Math. 280, 193–219 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Arian, E., Fahl, M., Sachs, E.: Trust-region proper orthogonal decomposition for flow control. ICASE Technical Report (2000)Google Scholar
  7. 7.
    Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM, Philadelphia (2000)CrossRefMATHGoogle Scholar
  8. 8.
    Bai, Z., Su, Y.: Dimension reduction of second order dynamical systems via a second-order Arnoldi method. SIAM J. Sci. Comput. 5, 1692–1709 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bashir, O, Willcox, K., Ghattas, O., van Bloemen Waanders, B., Hill, H.: Hessian-based model reduction for large-scale systems with initial condition inputs. Internat. J. Numer. Methods Engrg. 73, 844–868 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Baur, U., Beattie, C.A., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput. 33(5), 2489–2518 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Methods Eng. 21 (4), 331–358 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Beattie, C., Gugercin, S.: Krylov-based model reduction of second-order systems with proportional damping. In: Proceedings of the 44Th IEEE conference on decision and control, pp. 2278–2283 (2005)Google Scholar
  13. 13.
    Beattie, C., Gugercin, S.: Interpolatory projection methods for structure-preserving model reduction. Syst. Control Lett. 58, 225–232 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Beattie, C., Gugercin, S.: Model reduction by rational interpolation. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) To appear in model reduction and approximation: theory and algorithms. Available as 1409.2140. SIAM, Philadelphia (2017)
  15. 15.
    Benner, P., Breiten, T.: Interpolation-based \(\mathcal {H}_{2}\)-model reduction of bilinear control systems. SIAM J. Matrix Anal. Appl. 33(3), 859–885 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Benner, P., Breiten, T., Damm, T.: Generalized tangential interpolation for model reduction of discrete-time mimo bilinear systems. Int. J. Control. 84(8), 1398–1407 (2011)CrossRefMATHGoogle Scholar
  17. 17.
    Benner, P., Cohen, A., Ohlberger, M., Willcox, K.: Model reduction and approximation: theory and algorithms. SIAM (2005)Google Scholar
  18. 18.
    Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Benner, P., Kürschner, P., Tomljanović, Z., Truhar, N.: Semi-active damping optimization of vibrational systems using the parametric dominant pole algorithm. J. Appl. Math. Mech., 1–16.  https://doi.org/10.1002/zamm201400158 (2015)
  20. 20.
    Benner, P., Mehrmann, V., Sorensen, D.: Dimension reduction of Large-Scale systems. Lecture notes in computational science and engineering. Springer, Berlin (2005)CrossRefGoogle Scholar
  21. 21.
    Benner, P., Sachs, E., Volkwein, S: Model order reduction for PDE constrained optimization. Trends in PDE Constrained Optimization, Springer, 303–326 (2014)Google Scholar
  22. 22.
    Benner, P., Tomljanović, Z., Truhar, N.: Dimension reduction for damping optimization in li- near vibrating systems. Z. Angew. Math. Mech. 91(3), 179–191 (2011).  https://doi.org/10.1002/zamm.201000077 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Benner, P., Tomljanović, Z., Truhar, N.: Optimal damping of selected eigenfrequencies using dimension reduction. Numer. Linear Algebr. 20(1), 1–17 (2013).  https://doi.org/10.1002/nla.833 MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Blanchini, F., Casagrande, D., Gardonio, P., Miani, S.: Constant and switching gains in semi-active damping of vibrating structures. Int. J. Control 85 (12), 1886–1897 (2012)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Bonin, T., Faßbender, H., Soppa, A., Zaeh, M.: A fully adaptive rational global arnoldi method for the model-order reduction of second-order mimo systems with proportional damping. Math. Comput. Simul. 122, 1–19 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Breiten, T.: Structure-preserving model reduction for integro-differential equations. SIAM J. Control. Optim. 54(6), 2992–3015 (2016)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Bunse-Gerstner, A., Kubalinska, D., Vossen, G., Wilczek, D.: \(\mathcal {H}_{2}\)-norm optimal model reduction for large scale discrete dynamical {MIMO} systems. J. Comput. Appl. Math. 233(5), 1202–1216 (2010).  https://doi.org/10.1016/j.cam.2008.12.029. http://www.sciencedirect.com/science/article/pii/S0377042709001824. Special Issue Dedicated to William B. Gragg on the Occasion of His 70th BirthdayMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Burl, J.B.: Linear optimal control: \(\mathcal {H}_{2}\) and \(\mathcal {H}_{\infty }\) Methods, 1st edn. Addison-wesley Longman Publishing Co., Inc., Boston (1998)Google Scholar
  29. 29.
    Fehr, J., Fischer, M., Haasdonk, B., Eberhard, P.: Greedy-based approximation of frequency-weighted gramian matrices for model reduction in multibody dynamics. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift fź,r Angewandte Mathematik und Mechanik 93(8), 501–519 (2013).  https://doi.org/10.1002/zamm.201200014 MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Flagg, G., Gugercin, S.: Multipoint Volterra series interpolation and \(\mathcal {H}_{2}\) optimal model reduction of bilinear systems. SIAM J. Matrix Anal. Appl. 36(2), 549–579 (2015)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Freitas, P., Lancaster, P.: On the optimal value of the spectral abscissa for a system of linear oscillators. SIAM J. Matrix Anal. Appl. 21(1), 195–208 (1999)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Gallivan, K., Vandendorpe, A., Van Dooren, P.: Model reduction of MIMO systems via tangential interpolation. SIAM J. Matrix Anal. Appl. 26(2), 328–349 (2005)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Gawronski, W.: Advanced structural dynamics and active control of structures. Springer, New York (2004)CrossRefMATHGoogle Scholar
  34. 34.
    Golub, G., Loan, C.V.: Matrix computations, 3rd edn. J. Hopkins University Press, Baltimore (1996)MATHGoogle Scholar
  35. 35.
    Gratton, S., Vicente, L.N.: A surrogate management framework using rigorous trust-region steps. Optimization Methods Software 29(1), 10–23 (2014)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Gugercin, S., Antoulas, A.C., Beattie, C.: \(\mathcal {H}_{2}\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30 (2), 609–638 (2008)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Gumussoy, S., Henrion, D., Millstone, M., Overton, M.L.: Multiobjective robust control with HIFOO 2.0.. In: Proceedings of 6th IFAC symposium on robust control design Haifa (2009)Google Scholar
  38. 38.
    Hesthaven, J.S., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations. Springer (2016)Google Scholar
  39. 39.
    Inman, D.J., Andry, A.N.J.: Some results on the nature of eigenvalues of discrete damped linear systems. ASME J. Appl. Mech. 47, 927–930 (1980)CrossRefMATHGoogle Scholar
  40. 40.
    Kanno, Y.: Damper placement optimization in a shear building model with discrete design variables: a mixed-integer second-order cone programming approach. Earthq. Eng. Struct. Dyn. 42, 1657–1676 (2013)CrossRefGoogle Scholar
  41. 41.
    Kuzmanović, I., Tomljanović, Z., Truhar, N.: Optimization of material with modal damping. Appl. Math. Comput. 218, 7326–7338 (2012)MathSciNetMATHGoogle Scholar
  42. 42.
    Meier III, L., Luenberger, D.: Approximation of linear constant systems. IEEE Trans. Autom. Control 12(5), 585–588 (1967)CrossRefGoogle Scholar
  43. 43.
    Meyer, D., Srinivasan, S.: Balancing and model reduction for second-order form linear systems. IEEE Trans. Autom. Control 41(11), 1632–1644 (1996)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Mitchell, Y., Overton, M.L.: Hybrid expansion-contraction: a robust scaleable method for approximating the \(\mathcal {H}_{\infty }\) Norm. IMA J. Numer. Anal. 36, 9851014 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Müller, P., Schiehlen, W.: Linear vibrations. martinus nijhoff publishers (1985)Google Scholar
  46. 46.
    Nour-Omid, B., Regelbrugge, M.E.: Lanczos method for dynamic analysis of damped structural systems. Earthq. Eng. Struct. Dyn. 18, 1091–1104 (1989)CrossRefGoogle Scholar
  47. 47.
    Reis, T., Stykel, T.: Balanced truncation model reduction of second-order systems. Math. Comput. Model. Dyn. Syst. 14(5), 391–406 (2008)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Saadvandi, M., Meerbergen, K., Desmet, W.: Parametric Dominant Pole Algorithm for Parametric Model Order Reduction. Tech. rep., KU Leuven, Department of Computer Science (2013)Google Scholar
  49. 49.
    Su, T.J., Craig, Jr, R.: Model reduction and control of flexible structures using krylov vectors. J. Guid. Control. Dyn. 14(2), 260–267 (1991)CrossRefGoogle Scholar
  50. 50.
    Takewaki, I.: Optimal damper placement for minimum transfer functions. Earthq. Eng. Struct. Dyn. 26, 1113–1124 (1997)CrossRefGoogle Scholar
  51. 51.
    Truhar, N., Tomljanović, Z., Puvača, M.: An efficient approximation for optimal damping in mechanical systems. Int. J. Numer. Anal. Model. 14(2), 201–217 (2017)MathSciNetMATHGoogle Scholar
  52. 52.
    Truhar, N., Tomljanović, Z., Veselić, K.: Damping optimization in mechanical systems with external force. Appl. Math. Comput. 250, 270–279 (2015)MathSciNetMATHGoogle Scholar
  53. 53.
    Truhar, N., Veselić, K.: An efficient method for estimating the optimal dampers’ viscosity for linear vibrating systems using Lyapunov equation. SIAM J. Matrix Anal. Appl. 31(1), 18–39 (2009)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Van Dooren, P., Gallivan, K.: Absil, P.: \(\mathcal {H}_{2}\)-optimal model reduction of MIMO systems. Appl. Math. Lett. 21(12), 1267–1273 (2008)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Veselić, K.: Damped oscillations of linear systems. Springer Lecture Notes in Mathematics. Springer, Berlin (2011)CrossRefGoogle Scholar
  56. 56.
    Wyatt, S.: Issues in interpolatory model reduction: inexact solves, second-order systems and daes. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg (2012)Google Scholar
  57. 57.
    Zhou, K., Doyle, J., Glower, K.: Robust and optimal control. Prentice Hall, Upper Saddle River (1996)Google Scholar
  58. 58.
    Yue, Y., Meerbergen, K.: Parametric model order reduction of damped mechanical systems via the block Arnoldi process. Appl. Math. Lett. 26, 643–648 (2013)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Yue, Y., Meerbergen, K.: Accelerating optimization of parametric linear systems by model order reduction . SIAM J. Optim. 23(2), 1344–1370 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsJ.J. Strossmayer University of OsijekOsijekCroatia
  2. 2.Department of MathematicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations