Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Advances in Computational Mathematics
  3. Article
On reduced input-output dynamic mode decomposition
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Low-Rank Dynamic Mode Decomposition: An Exact and Tractable Solution

08 December 2021

Patrick Héas & Cédric Herzet

Empirical mode modeling

18 March 2022

Joseph Park, Gerald M. Pao, … Thomas Lorimer

Strong consistency of the projected total least squares dynamic mode decomposition for datasets with random noise

14 October 2022

Kensuke Aishima

Modal Parameter Identification of Nonlinear Systems Based on Hilbert Vibration Decomposition

26 September 2022

Xinjian Ren

Modal Parameter Identification Based on an Enhanced Hilbert Vibration Decomposition

21 July 2021

Cong Li & Yungan Cao

Data-driven nonstationary signal decomposition approaches: a comparative analysis

31 January 2023

Thomas Eriksen & Naveed ur Rehman

Improvement of empirical mode decomposition based on correlation analysis

01 August 2019

Junjun Chen, Huanwu Sun & Bing Xu

On Convexification of System Identification Criteria

27 September 2019

L. Ljung

A comprehensive scheme for reduction of nonlinear dynamical systems

01 November 2019

Danish Rafiq & Mohammad Abid Bazaz

Download PDF
  • Open Access
  • Published: 27 February 2018

On reduced input-output dynamic mode decomposition

  • Peter Benner  ORCID: orcid.org/0000-0003-3362-41031,
  • Christian Himpe  ORCID: orcid.org/0000-0003-2194-67541 &
  • Tim Mitchell  ORCID: orcid.org/0000-0002-8426-02421 

Advances in Computational Mathematics volume 44, pages 1751–1768 (2018)Cite this article

  • 2216 Accesses

  • 20 Citations

  • 3 Altmetric

  • Metrics details

Abstract

The identification of reduced-order models from high-dimensional data is a challenging task, and even more so if the identified system should not only be suitable for a certain data set, but generally approximate the input-output behavior of the data source. In this work, we consider the input-output dynamic mode decomposition method for system identification. We compare excitation approaches for the data-driven identification process and describe an optimization-based stabilization strategy for the identified systems.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Alla, A., Kutz, J.N.: Nonlinear model order reduction via dynamic mode decomposition. SIAM J. Sci. Comput. 39(5), B778–B796 (2017). https://doi.org/10.1137/16M1059308

    Article  MathSciNet  MATH  Google Scholar 

  2. Amsallem, D., Farhat, C.: Stabilization of projection-based reduced-order models. Numer. Methods Eng. 91(4), 358–377 (2012). https://doi.org/10.1002/nme.4274

    Article  MathSciNet  MATH  Google Scholar 

  3. Annoni, J., Gebraad, P., Seiler, P.: Wind farm flow modeling using input-output dynamic mode decomposition. In: American Control Conference (ACC), pp. 506–512 (2016). https://doi.org/10.1109/ACC.2016.7524964

  4. Annoni, J., Seiler, P.: A method to construct reduced-order parameter-varying models. Int. J. Robust Nonlinear Control 27(4), 582–597 (2017). https://doi.org/10.1002/rnc.3586

    Article  MathSciNet  MATH  Google Scholar 

  5. Antoulas, A.C.: Approximation of Large-Scale dynamical systems, Adv. Des. Control, vol. 6. Society of Industrial and Applied Mathematics Publications, Philadelphia (2005). https://doi.org/10.1137/1.9780898718713

    Book  Google Scholar 

  6. Aström, K.J., Eykhoff, P.: System identification – a survey. Automatica 7(2), 123–162 (1971). https://doi.org/10.1016/0005-1098(71)90059-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Brunton, B.W., Johnson, L.A., Ojemann, J.G., Kutz, J.N.: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J. Neurosci. Methods 258, 1–15 (2016). https://doi.org/10.1016/j.jneumeth.2015.10.010

    Article  Google Scholar 

  8. Burke, J.V., Overton, M.L.: Variational analysis of non-Lipschitz spectral functions. Math. Program. 90(2, Ser. A), 317–352 (2001). https://doi.org/10.1007/s102080010008

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, K.K., Tu, J.H., Rowley, R.W.: Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. Nonlinear Sci. 22(6), 887–915 (2012). https://doi.org/10.1007/s00332-012-9130-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Curtis, F.E., Mitchell, T., Overton, M.L.: A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles. Optim. Methods Softw. 32(1), 148–181 (2017). https://doi.org/10.1080/10556788.2016.1208749

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernando, K.V., Nicholson, H.: On the structure of balanced and other principal representations of SISO systems. IEEE Trans. Autom. Control 28(2), 228–231 (1983). https://doi.org/10.1109/TAC.1983.1103195

    Article  MATH  Google Scholar 

  12. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9780511919701

    Book  Google Scholar 

  13. Ionescu, T.C., Fujimoto, K., Scherpen, J.M.A.: Singular value analysis of nonlinear symmetric systems. IEEE Trans. Autom. Control 56(9), 2073–2086 (2011). https://doi.org/10.1109/TAC.2011.2126630

    Article  MathSciNet  MATH  Google Scholar 

  14. Katayama, K.: Subspace Methods for System Identification. Communications and Control Engineering. Springer, London (2005). https://doi.org/10.1007/1-84628-158-X

    Book  Google Scholar 

  15. Koopman, B.O.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315–381 (1931). http://www.pnas.org/content/17/5/315.full.pdf

    Article  Google Scholar 

  16. Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L.: Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. Society of Industrial and Applied Mathematics, Philadelphia. https://doi.org/10.1137/1.9781611974508 (2016)

  17. Lall, S., Marsden, J.E., Glavaški, S.: Empirical model reduction of controlled nonlinear systems. In: Proceedings of the IFAC World Congress, vol. F, pp. 473–478 (1999). https://doi.org/10.1016/S1474-6670(17)56442-3

    Article  Google Scholar 

  18. Lewis, A.S., Overton, M.L.: Nonsmooth optimization via quasi-Newton methods. Math. Program. 141(1–2, Ser. A), 135–163 (2013). https://doi.org/10.1007/s10107-012-0514-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Mezic, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1), 309–325 (2005). https://doi.org/10.1007/s11071-005-2824-x

    Article  MathSciNet  MATH  Google Scholar 

  20. Mitchell, T.: GRANSO: GRadient-based Algorithm for Non-Smooth Optimization. http://timmitchell.com/software/GRANSO. See also [10]

  21. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999). https://doi.org/10.1007/b98874

    Book  Google Scholar 

  22. Oku, H., Fujii, T.: Direct subspace model identification of LTI systems operating in closed-loop. In: 43Rd IEEE Conference on Decision and Control, pp. 2219–2224 (2004). https://doi.org/10.1109/CDC.2004.1430378

  23. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15(1), 142–161 (2016). https://doi.org/10.1137/15M1013857

    Article  MathSciNet  MATH  Google Scholar 

  24. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Generalizing Koopman Theory to Allow for Inputs and Control. arXiv:1602.07647, Cornell University. 1602.07647. Math.OC (2016)

  25. Rowley, C.W., Dawson, S.T.M.: Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387–417 (2017). https://doi.org/10.1146/annurev-fluid-010816-060042

    Article  MathSciNet  MATH  Google Scholar 

  26. Rowley, C.W., Mezic, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–1127 (2009). https://doi.org/10.1017/S0022112009992059

    Article  MathSciNet  MATH  Google Scholar 

  27. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010). https://doi.org/10.1017/S0022112010001217

    Article  MathSciNet  MATH  Google Scholar 

  28. Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: Theory and applications. J. Comput. Dyn. 1(2), 391–421 (2014). https://doi.org/10.3934/jcd.2014.1.391

    Article  MathSciNet  MATH  Google Scholar 

  29. Van Den Hof, P.M.J., Schrama, R.J.P.: An indirect method for transfer function estimation from closed loop data. Automatica 29(6), 1523–1527 (1993). https://doi.org/10.1016/0005-1098(93)90015-L

    Article  MathSciNet  MATH  Google Scholar 

  30. Van Overschee, P., De Moor, B.: N4SID: Numerical algorithms for state space subspace system identification. In: IFAC Proceedings Volumes, vol. 26, pp. 55–58 (1993). https://doi.org/10.1016/S1474-6670(17)48221-8

    Article  Google Scholar 

  31. Viberg, M.: Subspace-based methods for the identification of linear time-invariant systems. Automatica 31(12), 1835–1851 (1995). https://doi.org/10.1016/0005-1098(95)00107-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Open access funding provided by Max Planck Society. The authors are grateful for the helpful feedback and comments provided by the two anonymous referees.

Author information

Authors and Affiliations

  1. Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany

    Peter Benner, Christian Himpe & Tim Mitchell

Authors
  1. Peter Benner
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Christian Himpe
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Tim Mitchell
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Christian Himpe.

Additional information

Communicated by: Karsten Urban

Supported by the German Federal Ministry for Economic Affairs and Energy (BMWi), in the joint project: “MathEnergy – Mathematical Key Technologies for Evolving Energy Grids”, sub-project: Model Order Reduction (Grant number: 0324019B).

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benner, P., Himpe, C. & Mitchell, T. On reduced input-output dynamic mode decomposition. Adv Comput Math 44, 1751–1768 (2018). https://doi.org/10.1007/s10444-018-9592-x

Download citation

  • Received: 15 July 2017

  • Accepted: 25 January 2018

  • Published: 27 February 2018

  • Issue Date: December 2018

  • DOI: https://doi.org/10.1007/s10444-018-9592-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Dynamic mode decomposition
  • Model reduction
  • System identification
  • Cross Gramian
  • Optimization

Mathematics Subject Classification (2010)

  • 93B30
  • 90C99
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.