Advances in Computational Mathematics

, Volume 45, Issue 3, pp 1273–1290 | Cite as

A new computable sufficient condition for the convergence of subdivision schemes with nonnegative masks

  • Li ChengEmail author
  • Xinlong Zhou


We are interested in nontrivial conditions on the nonnegative masks that guarantee the convergence of the correspondent subdivision schemes. Roughly speaking, a certain convexity of the support of the given mask implies the convergence of the subdivision scheme. Moreover, those conditions are computable. The key of proving our main theorem is to find out an irreducible or primitive mapping on some multi-integer set and to show the uniqueness of this mapping.


Convergence Nonnegative mask Additive mapping Subdivision scheme 

Mathematics Subject Classification (2010)

65D17 26A18 39B12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are indebted to the referees for various helpful comments on their paper.

Funding information

The first author is supported partly by the National Natural Science Foundation of China No. 11701246 and Science and Technology Planning Project of Lishui City, China (2014RC21).


  1. 1.
    Bröker, M., Zhou, X.: Characterization of continuous, four-coefficient scaling functions via matrix spectral radius. SIAM J. Matrix Anal. Appl. 22, 242–257 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Amer. Math. Soc. 93(453), vi+ 186 (1991)Google Scholar
  3. 3.
    Charina, M.: Vector multivariate subdivision schemes: comparison of spectral methods for their regularity analysis. Appl. Comput. Harmon. Anal. 32, 86–108 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheng, L., Zhou, X.: A new characterization of convergent multivariate subdivision schemes with nonnegative masks. Arch. Math. 108, 197–207 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Daubechies, I., Lagarias, J.C.: Two-scale difference equations I. Existence and global regularity of solutions. SIAM J. Math. Anal. 22, 1388–1410 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Goodman, T.N.T., Micchelli, C.M., Ward, J.: Spectral radius formulas for subdivision operators. In: Schumaker, L.L., Webb, G. (eds.) Recent Advances in Wavelet Analysis, pp 335–360. Academic Press, Inc., Cambridge (1994)Google Scholar
  7. 7.
    Han, B., Jia, R.-Q.: Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Anal. 29, 1177–1199 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jetter, K., Li, X.: SIA Matrices and non-negative subdivision. Results Math. 62, 355–375 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jia, R.-Q., Zhou, D.-X.: Convergence of subdivision schemes associated with nonnegative masks. SIAM J. Matrix Anal. Appl. 21, 418–430 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Marik, J., Ptak, V.: Norms, spectra and combinatorial properties of matrices. Czechoslov. Math. J. 85, 181–196 (1960)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Melkman, A.A.: Subdivision schemes with non-negative masks always converge- unless they obviously cannot. Ann. Numer. Math. 4, 451–460 (1997)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Micchelli, C.A., Prautzsch, H.: Uniform refinement of curves. Linear Algebra Appl. 114/115, 841–870 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Paz, A.: Definite and quasidefinite sets of stochastic matrices. Proc. Amer. Math. Soc. 16, 634–641 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Tsitsiklis, J.N., Blondel, V.D.: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard, when not impossible, to compute and to approximate. Math. Control Signals Syst. 10, 31–41 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, Y.: Subdivision schemes and refinement equations with nonnegative masks. J. Approx. Th. 113, 207–220 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhou, X.: Characterization of convergent subdivision schemes. J. Approx. Its Appl. 14, 11–24 (1998)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Zhou, X.: Subdivision schemes with nonnegative masks. Math. Comput. 74, 819–839 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhou, X.: On multivariate subdivision schemes with nonnegative finite masks. Proc. Amer. Math. Soc. 134, 859–869 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Institute of Nonlinear AnalysisLishui UniversityLishuiChina
  2. 2.Faculty of MathematicsUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations