Skip to main content
Log in

Adaptive energy preserving methods for partial differential equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A framework for constructing integral preserving numerical schemes for time-dependent partial differential equations on non-uniform grids is presented. The approach can be used with both finite difference and partition of unity methods, thereby including finite element methods. The schemes are then extended to accommodate r-, h- and p-adaptivity. To illustrate the ideas, the method is applied to the Korteweg–de Vries equation and the sine-Gordon equation. Results from numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  2. Furihata, D.: Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134(1–2), 37–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32(6), 1839–1875 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Richtmyer, R.D., Morton, K.W.: Difference methods for initial-value problems. Second edition Interscience Tracts in Pure and Applied Mathematics, vol. 4. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney (1967)

    Google Scholar 

  5. Christiansen, S.H., Munthe-Kaas, H.Z., Owren, B.: Topics in structure-preserving discretization. Acta Numer. 20, 1–119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, vol. 31 of Springer Series in Computational Mathematics, 2nd edn. Springer-Verlag, Berlin (2006). Structure-preserving algorithms for ordinary differential equations

  7. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6(5), 449–467 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A: Math. Theor. 41, 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Furihata, D., Matsuo, T.: Discrete Variational Derivative Method. Chapman & Hall/CRC Numerical Analysis and Scientific Computing. CRC Press, Boca Raton (2011). A structure-preserving numerical method for partial differential equations

    MATH  Google Scholar 

  10. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the average vector field method. J. Comput. Phys. 231(20), 6770–6789 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33(5), 2318–2340 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yaguchi, T., Matsuo, T., Sugihara, M.: An extension of the discrete variational method to nonuniform grids. J. Comput. Phys. 229(11), 4382–4423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yaguchi, T., Matsuo, T., Sugihara, M.: The discrete variational derivative method based on discrete differential forms. J. Comput. Phys. 231(10), 3963–3986 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miyatake, Y., Matsuo, T.: A note on the adaptive conservative/dissipative discretization for evolutionary partial differential equations. J. Comput. Appl. Math. 274, 79–87 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, W., Russell, R.: Adaptive Moving Mesh Methods, vol. 174 of Springer Series in Applied Mathematical Sciences. Springer-Verlag, New York (2010)

    Google Scholar 

  16. Zegeling, P.A.: r-refinement for evolutionary PDEs with finite elements or finite differences. Appl. Numer. Math. 26, 97–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, T., Baines, M., Langdon, S.: A finite difference moving mesh method based on conservation for moving boundary problems. J. Comput. Appl. Math. 288, 1–17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Babus̆ka, I., Guo, B.: The h, p and h-p version of the finite element method; basis theory and applications. Adv. Eng. Softw. 15, 159–174 (1992)

    Article  Google Scholar 

  19. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357(1754), 1021–1045 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Melenk, J., Babus̆ka, I.: The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139, 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Furihata, D.: Finite difference schemes for u/t = (/x)α G/u that inherit energy conservation or dissipation property. J. Comput. Phys. 156(1), 181–205 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Norton, R.A., McLaren, D.I., Quispel, G.R.W., Stern, A., Zanna, A.: Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete Contin. Dyn. Syst. 35(5), 2079–2098 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bauer, M., Joshi, S., Modin, K.: Diffeomorphic density matching by optimal information transport. SIAM J. Imaging Sci. 8(3), 1718–1751 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, W., Russell, R.: Adaptive mesh movement - the MMPDE approach and its applications. J. Comput. Appl. Math. 128, 383–398 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Budd, C.J., Huang, W., Russell, R.D.: Adaptivity with moving grids. Acta Numer. 18, 111–241 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Blom, J., Verwer, J.: On the use of the arclength and curvature monitor in a moving-grid method which is based on the method of lines. Department of Numerical Mathematics [NM]. (8902), 1–15 (1989). https://ir.cwi.nl/pub/5850

  27. Pryce, J.D.: On the convergence of iterated remeshing. IMA J. Numer. Anal. 9(3), 315–335 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Budd, C.J., Huang, W., Russell, R.D.: Moving mesh methods for problems with blow-up. SIAM J. Sci. Comput. 17(2), 305–327 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lu, C., Huang,W., Qiu, J.: An adaptive moving mesh finite element solution of the Regularized Long Wave equation. J. Sci. Comput. 1–23 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torbjørn Ringholm.

Additional information

Communicated by: Alexander Barnett

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eidnes, S., Owren, B. & Ringholm, T. Adaptive energy preserving methods for partial differential equations. Adv Comput Math 44, 815–839 (2018). https://doi.org/10.1007/s10444-017-9562-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9562-8

Keywords

Mathematics Subject Classification (2010)

Navigation