Skip to main content
Log in

Unconditional and optimal H 2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The focus of this paper is on the optimal error bounds of two finite difference schemes for solving the d-dimensional (d = 2, 3) nonlinear Klein-Gordon-Schrödinger (KGS) equations. The proposed finite difference schemes not only conserve the mass and energy in the discrete level but also are efficient in practical computation because only two linear systems need to be solved at each time step. Besides the standard energy method, an induction argument as well as a ‘lifting’ technique are introduced to establish rigorously the optimal H 2-error estimates without any restrictions on the grid ratios, while the previous works either are not rigorous enough or often require certain restriction on the grid ratios. The convergence rates of the proposed schemes are proved to be at O(h 2 + τ 2) with mesh-size h and time step τ in the discrete H 2-norm. The analysis method can be directly extended to other linear finite difference schemes for solving the KGS equations in high dimensions. Numerical results are reported to confirm the theoretical analysis for the proposed finite difference schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baillon, J.B., Chadam, J.M.: The Cauchy problem for the coupled Schrödinger-Klein-Gordon equations. Contemporary Devolepment in Continum Mechanics and Partial Differential Equations, North-Holland Mathematics Studies, Amsterdam-New York Oxlord 30, 37–44 (1978)

    MATH  Google Scholar 

  2. Bao, W., Cai, Y.: Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math. Comput. 82, 99–128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, W., Dong, X., Wang, S.: Singular limits of Klein-Gordon-Schrödinger equations. Multiscale Model. Simul. 8(5), 1742–1769 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bao, W., Yang, L.: Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations. J. Comput. Phys. 225, 1863–1893 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, W., Zhao, X.: A uniformly accurate (UA) multiscale time integrator Fourier pseoduspectral method for the Klein-Gordon-Schrödinger equations in the nonrelativistic limit regime. Numer. Math. 135, 833–873 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biler, P.: Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling. SIAM J. Math. Anal. 21, 1190–1212 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Darwish, A., Fan, E.G.: A series of new explicit exact solutions for the coupled Klein-Gordon-Schrödinger equations. Chaos Soliton Fract. 20, 609–617 (2004)

    Article  MATH  Google Scholar 

  9. Fukuda, I., Tsutsumi, M.: On the Yukawa-coupled Klein-Gordon-Schrödinger equations in three space dimensions. Prof. Jpn. Acad. 51, 402–405 (1975)

    Article  MATH  Google Scholar 

  10. Fukuda, I., Tsutsumi, M.: On coupled Klein-Gordon-Schrödinger equations II. J. Math. Anal. Appl. 66, 358–378 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fukuda, I., Tsutsumi, M.: On coupled Klein-Gordon-Schrödinger equations III. Math. Jpn. 24, 307–321 (1979)

    MATH  Google Scholar 

  12. Guo, B.: Global solution for some problem of a class of equations in interaction of complex Schrödinger field and real Klein-Gordon field. Sci. China Ser. A 25, 97–107 (1982)

    Google Scholar 

  13. Guo, B., Miao, C.: Asymptotic behavior of coupled Klein-Gordon-Schrödinger equations. Sci. China Ser., A 25, 705–714 (1995)

    Google Scholar 

  14. Hayashi, N., von Wahl, W.: On the global strong solutions of coupled Klein-Gordon-Schrödinger equations. J. Math. Soc. Jpn. 39, 489–497 (1987)

    Article  MATH  Google Scholar 

  15. Hioe, F.: Periodic solitary waves for two coupled nonlinear Klein-Gordon and Schrödinger equations. J. Phys. A: Math. Gen. 36, 7307–7330 (2003)

    Article  MATH  Google Scholar 

  16. Hong, J., Jiang, S., Kong, L., Li, C.: Numerical comparison of five difference schemes for coupled Klein-Gordon-Schrödinger equations in quantum physics. J. Phys. A Math. Theor. 40, 9125 (2007)

    Article  MATH  Google Scholar 

  17. Hong, J., Jiang, S., Li, C.: Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations. J. Comput. Phys. 228, 3517–3532 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kong, L., Liu, R., Xu, Z.: Numerical simulation of interaction between Schrödinger field and Klein-Gordon field by multisymplectic method. Appl. Math. Comput. 181, 342–350 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Kong, L., Zhang, J., Cao, Y., Duan, Y., Huang, H.: Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schröinger equations. Comput. Phys. Comm. 181, 1369–1377 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Makhankov, V.G.: Dynamics of classical solitons (in non-integrable systems). Phys. Lett. C 35, 1–128 (1978)

    Google Scholar 

  21. Ohta, M.: Stability of stationary states for the coupled Klein-Gordon-Schrödinger equations. Nonlinear Anal. TMA 27, 455–461 (1996)

    Article  MATH  Google Scholar 

  22. Sun, Z., Zhu, Q.: On Tsertsvadze’s difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Appl. Math. 98, 289–304 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, M., Zhou, Y.: The periodic wave solutions for the Klein-Gordon-Schrödinger equations. Phys. Lett. A 318, 84–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, S., Zhang, L.: A class of conservative orthogonal spline collocation schemes for solving coupled Klein-Gordon-Schrödinger equations. Appl. Math. Comput. 203, 799–812 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Wang, T., Jiang, Y.: Point-wise errors of two conservative difference schemes for the Klein-Gordon-Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 17, 4565–4575 (2012)

    Article  MATH  Google Scholar 

  26. Wang, T.: Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrödinger equation. J. Math. Anal. Appl. 412, 155–167 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, T., Zhao, X.: Optimal l error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions. Science China Math. 57(10), 2189–2214 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xiang, X.: Spectral method for solving the system of equations of Schrödinger-Klein-Gordon field. J. Comput. Appl. Math. 21, 161–171 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, L.: Convergence of a conservative difference schemes for a class of Klein-Gordon-Schrödinger equations in one space dimension. Appl. Math. Comput. 163, 343–355 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, F., Han, B.: The finite difference method for dissipative Klein-Gordon-Schrödinger equations in three dimensions. J. Comput. Math. 28(6), 879–900 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, Y., Sun, Z., Wang, T.: Convergence analysis of a linearized Crank-Nicolson scheme for the two-dimensional complex Ginzburg-Landau equation. Numer. Methods Partial Differential Eqs. 29(5), 1487–1503 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou, Y.: Application of Discrete Functional Analysis to the Finite Difference Methods. International Academic Publishers, Beijing (1990)

    Google Scholar 

  34. Zhou, Y., Yuan, G.: Some discrete interpolation inequalities with several indices. Beijing Math. 2, 94–108 (1996)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation (Grant No. 11571181), the Natural Science Foundation of Jiangsu Province (Grant No. BK20171454) and Oing Lan Project. This work was partially done while the first author was visiting Beijing Computational Science Research Center from October 3, 2013 to March 3, 2014. X. Zhao is supported by the IPL FRATRES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingchun Wang.

Additional information

Communicated by: Ivan Oseledets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhao, X. & Jiang, J. Unconditional and optimal H 2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions. Adv Comput Math 44, 477–503 (2018). https://doi.org/10.1007/s10444-017-9557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9557-5

Keywords

Mathematics Subject Classification (2010)

Navigation