Skip to main content
Log in

Analysis of the grad-div stabilization for the time-dependent Navier–Stokes equations with inf-sup stable finite elements

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper studies inf-sup stable finite element discretizations of the evolutionary Navier–Stokes equations with a grad-div type stabilization. The analysis covers both the case in which the solution is assumed to be smooth and consequently has to satisfy nonlocal compatibility conditions as well as the practically relevant situation in which the nonlocal compatibility conditions are not satisfied. The constants in the error bounds obtained do not depend on negative powers of the viscosity. Taking into account the loss of regularity suffered by the solution of the Navier–Stokes equations at the initial time in the absence of nonlocal compatibility conditions of the data, error bounds of order \(\mathcal O(h^{2})\) in space are proved. The analysis is optimal for quadratic/linear inf-sup stable pairs of finite elements. Both the continuous-in-time case and the fully discrete scheme with the backward Euler method as time integrator are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975). Pure and Applied Mathematics, vol. 65

    MATH  Google Scholar 

  2. Ahmed, N., Rebollo, T.C., John, V., Rubino, S.: Analysis of full space-time discretization of the Navier–Stokes equations by a local projection stabilization method. IMA J. Numer. Anal. (to appear)

  3. Arndt, D., Dallmann, H., Lube, G: Local projection FEM stabilization for the time-dependent incompressible Navier-Stokes problem. Numer. Methods Partial Diff. Equa. 31(4), 1224–1250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ayuso, B., García-archilla, B., Novo, J.: The postprocessed mixed finite-element method for the Navier-Stokes equations. SIAM J. Numer. Anal. 43(3), 1091–1111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Ridgway Scott, L.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  6. Burman, E.: Robust error estimates for stabilized finite element approximations of the two dimensional Navier-Stokes’ equations at high Reynolds number. Comput. Methods Appl. Mech. Eng. 288, 2–23 (2015)

    Article  MathSciNet  Google Scholar 

  7. Burman, E., Fernández, M.A.: Continuous interior penalty finite element method for the time-dependent Navier-Stokes equations: Space discretization and convergence. Numer. Math. 107(1), 39–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, H.: Pointwise error estimates for finite element solutions of the Stokes problem. SIAM J. Numer. Anal. 44(1), 1–28 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Co., Amsterdam (1978). Studies in Mathematics and its Applications, vol. 4

    MATH  Google Scholar 

  10. Constantin, P., Foias, C.: Navier–Stokes Equations. The Unviersity of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  11. Dallmann, H., Arndt, D., Lube, G.: Local projection stabilization for the O,seen problem. IMA J. Numer Anal. 36(2), 796–823 (2016)

    Article  MathSciNet  Google Scholar 

  12. de Frutos, J., García-Archilla, B., Novo, J.: The postprocessed mixed finite-element method for the Navier-Stokes equations: Refined error bounds. SIAM J. Numer. Anal. 46(1), 201–230 (2007/08)

  13. de Frutos, J., García-Archilla, B., Novo, J.: Postprocessing finite-element methods for the Navier-Stokes equations: the fully discrete case. SIAM J. Numer. Anal. 47(1), 596–621 (2008/09)

  14. de Frutos, J, García-Archilla, B, John, V, Novo, J: Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements. J. Sci. Comput. 66(3), 991–1024 (2016)

  15. Franca, L.P., Hughes, T.J.R. : Two classes of mixed finite element methods. Comput. Methods Appl. Mech Engrg. 69(1), 89–129 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Girault, V., Pierre-Arnaud, R: Finite Element Methods for Navier-Stokes Equations, Volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). Theory and algorithms

  17. Heywood, J.G., Rannacher, R: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. III. Smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25(3), 489–512 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heywood, J.G., Rannacher, R: Finite element approximation of the nonstationary N,avier-Stokes problem. IV. Error analysis for second order time discretization. SIAM J. Numer Anal. 27(2), 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jenkins, E.W., John, V., Linke, A., Rebholz, L.G.: On the parameter choice in grad-div stabilization for the Stokes equations. Adv. Comput. Math. 40, 491–516 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. John, V: Finite Element Methods for Incompressible Flow Problems, Volume 51 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2016)

  22. John, V., Kindl, A.: Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput. Methods Appl. Mech Engrg. 199 (13–16), 841–852 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. John, V., Linke, A., Merdon, C., Neilan, M, Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. (to appear) (2016)

  24. John, V., Gunar, M.: MooNMD—a program package based on mapped finite element methods. Comput. Vis. Sci. 6(2–3), 163–169 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lube, G., Arndt, D., Dallmann, H.: Understanding the limits of inf-sup stable Galerkin-FEM for incompressible flows. In: Knobloch, P. (ed.) Boundary and Interior Layers, Computational and Asymptotic Methods - BAIL 2014, pp. 147–169 (2016)

  26. Olshanskii, MA.: A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods. Comput. Methods Appl. Mech. Engrg. 191, 5515–5536 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Olshanskii, M.A., Reusken, A.: Grad-div stabilization for Stokes equations. Math Comp. 73, 1699–1718 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Röhe, L, Lube, G.: Analysis of a variational multiscale method for large-eddy simulation and its application to homogeneous isotropic turbulence. Comput. Methods Appl. Mech. Engrg. 199(37–40), 2331–2342 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schoroeder, P.W., Lube, G.: Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier–Stokes flows. J. Num. Anal., in press (2017)

  30. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis- Studies in Mathematics and its Applications, vol. 2. North-Holland (1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Novo.

Additional information

Communicated by: Karsten Urban

Javier de Frutos research was supported by Spanish MINECO under grants MTM2013-42538-P (MINECO, ES) and MTM2016-78995-P (AEI/FEDER, UE).

Bosco García-Archilla research was supported by Spanish MINECO under grant MTM2015-65608-P. Julia Novo research was supported by Spanish MINECO under grants MTM2013-42538-P (MINECO, ES) and MTM2016-78995-P (AEI/FEDER, UE).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Frutos, J., García-Archilla, B., John, V. et al. Analysis of the grad-div stabilization for the time-dependent Navier–Stokes equations with inf-sup stable finite elements. Adv Comput Math 44, 195–225 (2018). https://doi.org/10.1007/s10444-017-9540-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9540-1

Keywords

Mathematics Subject Classification (2010)

Navigation