Computing ultra-precise eigenvalues of the Laplacian within polygons

Article

Abstract

The classic eigenvalue problem of the Laplace operator inside a variety of polygons is numerically solved by using a method nearly identical to that used by Fox, Henrici, and Moler in their 1967 paper. It is demonstrated that such eigenvalue calculations can be extended to unprecedented precision, often to well over a hundred digits, or even thousands of digits. To work well, geometric symmetry must be exploited. The de-symmetrized fundamental domains (usually triangular) considered here have at most one non-analytic vertex. Dirichlet, Neumann, and periodic-type edge conditions are independently imposed on each symmetry-reduced polygon edge. The method of particular solutions is used whereby an eigenfunction is expanded in an N-term Fourier-Bessel series about the non-analytic vertex and made to match at a set of N points on the boundary. Under the right conditions, the so-called point-matching determinant has roots that approximate eigenvalues. A key observation is that by increasing the number of terms in the expansion, the approximate eigenvalue may be made to alternate above and below, while approaching what is presumed to be the exact eigenvalue. This alternation effectively provides a new method to bound eigenvalues, by inspection. Specific examples include Dirichlet and Neumann eigenvalues within polygons with re-entrant angles (L-shape, cut-square, 5-point star) and the regular polygons. Thousand-digit results are reported for the lowest Dirichlet eigenvalues of the L-shape, and regular pentagon and hexagon.

Keywords

Laplacian eigenvalue Helmholtz equation Method of particular solutions Point-matching method Polygon Eigenvalue bound 

Mathematics Subject Classification (2010)

65N35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amore, P., Boyd, J.P., Fernandez, F.M., Rosler, B.: High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson Extrapolation of second order finite differences. 2015. arXiv:1509.02795
  2. 2.
    Barnett, A., Hassell, A. : Fast computation of high frequency Dirichlet eigenmodes via spectral flow of the interior Neumann-to-Dirichlet map. Comm. Pure Appl. Math. 67(3), 351–407 (2014). More recent reference to MPSpack MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barnett A.H., Betcke T.: An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons. SIAM J. Sci. Comp. 32 (3), 1417–1441 (2010) http://code.google.com/p/mpspack MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Barta, J.: Über die näherungsweise Lösung eigiger zweidimensionaler Elastizitätsaufgaben. Zeitschrift für angewandte Mathematik und Mechanik 17, 184 (1937)CrossRefMATHGoogle Scholar
  5. 5.
    Bauer, L., Reiss, E.L.: Cutoff wavenumbers and modes of hexagonal waveguides. SIAM J. of Appl. Math. 35, 508–514 (1978)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Betcke, T., Trefethen, L.N.: Reviving the method of particular solutions. SIAM Rev. 47, 469–491 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Boady, M.: Applications of Symbolic Computation to the Calculus of Moving Surfaces. PhD thesis, Drexel University, Philadelphia, PA (2015)Google Scholar
  8. 8.
    Conway, H.D.: The bending, buckling, and flexural vibrations of simply supported polygonal plates by point matching. Trans. ASME J. Appl. Mech. 83E, 288–291 (1961)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cureton, L.M., Kuttler, J.R.: Eigenvalues of the Laplacian on regular polygons and polygons resulting from their dissection. J. Sound Vib. 220, 83–98 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fox, L., Henrici, P., Moler, C.: Approximation and bounds for eigenvalues of elliptic operators. SIAM J. Numer. Anal. 4, 89–102 (1967)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Torbjörn Granlund and the GMP development team: GNU MP: The GNU Multiple Precision Arithmetic Library 6.0.0 edition (2015). Available online http://gmplib.org/
  12. 12.
    Guidotti, P., Lambers, J.V.: Eigenvalue characterization and computation for the Laplacian on general 2-D domains. Numer. Funct. Anal. Optim. 29, 507–531 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hersch, J.: Erweiterte symmetrieeigenschaften von lösungen gewisser linearer rand- und eigenwertprobleme. J. reine angew. Math. 218, 143–158 (1965)MathSciNetMATHGoogle Scholar
  14. 14.
    Hillairet, L., Judge, C.: Generic spectral simplicity of polygons. Proc. Amer. Math. Soc. 137, 2139–2145 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Jones, R.S.: The one-dimensional three-body problem and selected waveguide problems: solutions of the two-dimensional Helmholtz equation . PhD thesis, The Ohio State University (1993)Google Scholar
  16. 16.
    Kuttler, J.R., Sigillito, V.G.: Eigenvalues of the Laplacian in two dimensions. SIAM Rev. 26, 163–193 (1984)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lanz, C.: The use of Schwarz-Christoffel transformations in determining acoustic resonances. Master’s thesis, Virginia Polytechnic Institute and State University (2010)Google Scholar
  18. 18.
    Maxima: Maxima, a Computer Algebra System. Version 5.31 (2015). http://maxima.sourceforge.net/
  19. 19.
    Moler, C.B., Payne, L.E.: Bounds for eigenvalues and eigenvectors of symmetric operators. SIAM J. Numer. Anal. 5, 64–70 (1968)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Oikonomoum, V.K.: Casimir energy for a regular polygon with Dirichlet boundaries. 2010. arXiv:1012.5376
  21. 21.
    Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences, 2010. Published electronically at http://oeis.org
  22. 22.
    Strang, G., Grinfeld, P.: The Laplacian eigenvalues of a polygon. Computers and Mathematics with Applications 48, 1121–1133 (2004)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    The PARI Group: Bordeaux. PARI/GP version 2.7.3 (2015). Available online http://pari.math.u-bordeaux.fr/
  24. 24.
    Trefethen, L.N., Betcke, T.: Computed eigenmodes of planar regions. Contemp. Math., Amer. Math. Soc. 412, 297–314 (2006)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Yuan, Q., He, Z.: Bounds to eigenvalues of the Laplacian on L-shaped domain by variational methods. J. Comp. Appl. Math. 233, 1083–1090 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Independent ResearcherSunburyUSA

Personalised recommendations