Skip to main content
Log in

Local cubic splines on non-uniform grids and real-time computation of wavelet transform

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, local cubic quasi-interpolating splines on non-uniform grids are described. The splines are designed by fast computational algorithms that utilize the relation between splines and cubic interpolation polynomials. These splines provide an efficient tool for real-time signal processing. As an input, the splines use either clean or noised arbitrarily-spaced samples. Formulas for the spline’s extrapolation beyond the sampling interval are established. Sharp estimations of the approximation errors are presented. The capability to adapt the grid to the structure of an object and to have minimal requirements to the operating memory are of great advantages for offline processing of signals and multidimensional data arrays. The designed splines serve as a source for generating real-time wavelet transforms to apply to signals in scenarios where the signal’s samples subsequently arrive one after the other at random times. The wavelet transforms are executed by six-tap weighted moving averages of the signal’s samples without delay. On arrival of new samples, only a couple of adjacent transform coefficients are updated in a way that no boundary effects arise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York (1972)

  2. Aldroubi, A., Cabrellib, C., Molterb, U.M.: Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for \(l^{2}(\mathbb {R}^{d})\) . Applied and Comp Harm. Analysis 17(2), 119–140 (2004)

    Article  Google Scholar 

  3. Averbuch, A.Z., Neittaanmäki, P., Zheludev, V. A.: Spline and spline wavelet methods with applications to signal and image processing, Volume I: Periodic splines. Springer (2014)

  4. Averbuch, A.Z., Neittaanmäki, P., Zheludev, V.A.: Spline and spline wavelet methods with applications to signal and image processing, Volume II: Non-periodic splines. Springer (2015)

  5. Brislawn, C.M.: Classification of nonexpansive symmetric extension transforms for multirate filter banks. Appl. Comput. Harmon. Anal. 3(4), 337–357 (1996)

    Article  MATH  Google Scholar 

  6. Cai, T., Brown, L.: Wavelet shrinkage for nonequispaced samples. Annals of Statistics 26(5), 1783–1799 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daubechies, I., Guskov, I., Schroder, P., Sweldens, W.: Wavelets on irregular point sets. Phil. Trans. R. Soc. Lond. A 357, 2397–2413 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Boor, C.: A practical guide to splines. Springer, New York (1978)

    Book  MATH  Google Scholar 

  9. de Boor, C.: Divided differences. Surveys in Approximation Theory 1 (2005)

  10. Hall, C. A.: On error bounds for spline interpolation. J. Approx. Theory 1, 209–218 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahmen, W., Carnicer, J.M., Pen, a, J.M. : Local decomposition of renable spaces and wavelets. Appl. Comput Harmon. Anal 3 (1996)

  12. Liu, Z., Mi, Y., Mao, Y.: An improved real-time denoising method based on lifting wavelet transform. Measurement Science Review 14(3), 152–159 (2014)

    Article  Google Scholar 

  13. Lyche, T., Schumaker, L.L.: Local Spline Approximation Methods. MRC Technical Summary Mathematics Research Center University of Wisconsin (1974)

  14. Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions, vol. 4:45–99 (1946). Parts A and B

  15. Schumaker, L.L.: Spline functions: Basic theory. John Wiley & Sons, New York (1981)

    MATH  Google Scholar 

  16. Stoer, J., Bulirsch, R.: Introduction to numerical analysis, Second edition. Springer–Verlag, New York (1993)

    Book  MATH  Google Scholar 

  17. Suturin, M.G., Zheludev, V.: On the approximation on finite intervals and local spline extrapolation . Russian J. Numer. Anal. Math. Modelling 9(1), 75–89 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sweldens, W.: The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sweldens, W.: The lifting scheme: A construction of second generation wavelets. SIAM. J. Math. Anal. 29(2), 511–546 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Vanraesa, E., Jansenb, M., Bultheela, A.: Stabilised wavelet transforms for non-equispaced data smoothing. Signal Processing 82(12), 1979–1990 (2002)

    Article  Google Scholar 

  21. Xia, R., Meng, K., Qian, F., Wang, Z.L.: Online wavelet denoising via a moving window. Acta Automatica Sinica 33(9), 897–901 (2007)

    Article  Google Scholar 

  22. Zav’yalov, Y.S., Kvasov, B.I., Miroshnichenko, V.L.: Methods of spline-functions. Nauka, Moscow, 1980. (In Russian)

  23. Zheludev, V.: Local spline approximation on arbitrary meshes. Sov. Math. 8, 16–21 (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Zheludev.

Additional information

Communicated by: Arieh Iserles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averbuch, A., Neittaanmäki, P., Shefi, E. et al. Local cubic splines on non-uniform grids and real-time computation of wavelet transform. Adv Comput Math 43, 733–758 (2017). https://doi.org/10.1007/s10444-016-9504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9504-x

Keywords

Mathematics Subject Classification (2010)

Navigation