Skip to main content
Log in

Abstract

Because physical phenomena on Earth’s surface occur on many different length scales, it makes sense when seeking an efficient approximation to start with a crude global approximation, and then make a sequence of corrections on finer and finer scales. It also makes sense eventually to seek fine scale features locally, rather than globally. In the present work, we start with a global multiscale radial basis function (RBF) approximation, based on a sequence of point sets with decreasing mesh norm, and a sequence of (spherical) radial basis functions with proportionally decreasing scale centered at the points. We then prove that we can “zoom in” on a region of particular interest, by carrying out further stages of multiscale refinement on a local region. The proof combines multiscale techniques for the sphere from Le Gia, Sloan and Wendland, SIAM J. Numer. Anal. 48 (2010) and Applied Comp. Harm. Anal. 32 (2012), with those for a bounded region in ℝd from Wendland, Numer. Math. 116 (2010). The zooming in process can be continued indefinitely, since the condition numbers of matrices at the different scales remain bounded. A numerical example illustrates the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Antoine, J.P., Vandergheynst, P.: Wavelets on the 2-sphere: a group-theoretical approach. Appl. Comput. Harmon. Anal. 7, 262–291 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, D., Menegatto, V.A., Sun, X.: A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Amer. Math. Soc. 131, 2733–2740 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Filbir, F., Themistoclakis, W.: Polynomial approximation on the sphere using scattered data. Math. Nachr. 281, 650–668 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere with Applications to Geomathematics. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  6. Gräf, M., Kunis, S., Potts, D.: On the computation of nonnegative quadrature weights on the sphere. Appl. Comput. Harmon. Anal. 27, 124–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hangelbroek, T., Narcowich, F.J., Ward, J.D.: Polyharmonic and related kernels on manifolds: interpolation and approximation. Found. Comput. Math. 12, 625–670 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, pp. 1187–1220. Springer Verlag (2010)

  9. Hubbert, S., Morton, T.M.: A Duchon framework for the sphere. J Approx. Theory 129, 28–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Le Gia, Q.T., Narcowich, F.J., Ward, J.D., Wendland, H.: Continuous and discrete least-square approximation by radial basis functions on spheres. J. Approx. Theory 143, 124–133 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Le Gia, Q.T., Mhaskar, H.: Quadrature formulas and localized linear polynomial operators on the sphere. SIAM Numer. Anal. 47, 440–466 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Le Gia, Q.T., Sloan, I.H., Wendland, H.: Multiscale analysis in Sobolev spaces on the sphere. SIAM J. Numer. Anal. 48, 2065–2090 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Le Gia, Q.T., Sloan, I.H., Wendland, H.: Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere. Appl. Comput. Harmon. Anal. 32, 401–412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Le Gia, Q.T., Sloan, I.H., Wendland, H.: Data compression on the sphere using multiscale radial basis functions. Adv. Comp. Math. 40, 923–943 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, New York (1972)

    Book  MATH  Google Scholar 

  16. Mhaskar, H.N.: On the representation of smooth functions on the sphere using finitely many bits. Appl. Comput. Harmon. Anal. 18, 215–233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz–Zygmund inequalities and positive quadrature. Math. Comp. 70, 1113–1130 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Müller, C.: Spherical Harmonics, Volume 17 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1966)

    Google Scholar 

  19. Narcowich, F.J., Petrushev, P., Ward, J.D.: Localized tight frames on spheres. SIAM J. Math Anal. 38, 574–594 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Narcowich, F.J., Sun, X., Ward, J.D.: Approximating power of RBFs and their associated SBFs: a comparison. Adv. Comp. Math. 27, 107–124 (2007)

    Article  MATH  Google Scholar 

  21. Narcowich, F.J., Ward, J.D.: Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 1393–1410 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds. Springer, New York (1994)

    Book  MATH  Google Scholar 

  23. Saff, E.B., Rakhmanov, E.A., Zhou, Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1, 647–662 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schoenberg, I.J.: Positive definite function on spheres. Duke Math. J. 9, 96–108 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schröder, P., Sweldens, W.: Spherical wavelets: efficiently representing functions on the sphere. Computer Graphics Proceedings (SIGGRAPH ’95) (1995)

  26. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. School of Computer Science, Carnegie Mellon University, Pittsburgh. http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

  27. Triebel, H.: Interpolation Theory, Function Spaces and Differential Operators. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  28. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  29. Wendland, H.: Multiscale analysis in Sobolev spaces on bounded domains. Numer. Math. 116, 493–517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, Y., Cheney, E.W.: Strictly positive definite functions on spheres. Proc. Amer. Math Soc. 116, 977–981 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. T. Le Gia.

Additional information

Communicated by: John Lowengrub

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Gia, Q.T., Sloan, I.H. & Wendland, H. Zooming from global to local: a multiscale RBF approach. Adv Comput Math 43, 581–606 (2017). https://doi.org/10.1007/s10444-016-9498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9498-4

Keywords

Mathematics Subject Classification (2010)

Navigation