Skip to main content
Log in

Complexity of oscillatory integrals on the real line

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We analyze univariate oscillatory integrals defined on the real line for functions from the standard Sobolev space \(H^{s} (\mathbb {R})\) and from the space \(C^{s}(\mathbb {R})\) with an arbitrary integer s ≥ 1. We find tight upper and lower bounds for the worst case error of optimal algorithms that use n function values. More specifically, we study integrals of the form

$$ I_{k}^{\varrho} (f) = {\int}_{\mathbb{R}} f(x) \,\mathrm{e}^{-i\,kx} \varrho(x) \, \mathrm{d} x\ \ \ \text{for}\ \ f\in H^{s}(\mathbb{R})\ \ \text{or}\ \ f\in C^{s}(\mathbb{R}) $$
(1)

with \(k\in {\mathbb {R}}\) and a smooth density function ρ such as \( \rho (x) = \frac {1}{\sqrt {2 \pi }} \exp (-x^{2}/2)\). The optimal error bounds are \({\Theta }((n+\max (1,|k|))^{-s})\) with the factors in the Θ notation dependent only on s and ϱ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blakemore, M., Evans, G.A., Hyslop, J.: Comparison of some methods for evaluating infinite range oscillatory integrals. J. Comput. Phys. 22, 352–376 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, R.: On the evaluation of infinite integrals involving Bessel functions. Appl. Math. Comput. 235, 212–220 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Huybrechs, D., Olver, S.: Highly oscillatory quadrature. Chapter 2 in: Highly Oscillatory Problems, London Math. Soc. Lecture Note Ser. 366, pp. 25–50, Cambridge Univ. Press, Cambridge (2009)

  4. Milovanović, G.V., Stanić, M.P.: Numerical integration of highly oscillating functions. In: Milovanović, G.V., Rassias, M.Th. (eds.) Analytic Number Theory, Approximation Theory, and Special Functions, pp. 613–649, Springer, New York (2014)

  5. Novak, E., Ullrich, M., Woźniakowski, H.: Complexity of oscillatory integration for univariate Sobolev spaces. J. Complexity 31, 15–41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume I: Linear Information. EMS Tracts in Mathematics, vol. 6. European Mathematical Society (EMS), Zürich (2008)

  7. Novak, E., Zhang, S.: Optimal quadrature formulas for the Sobolev space H 1. submitted, ArXiv e-prints 1609.01146 (2016)

  8. Rvachev, V.A.: Compactly supported solutions of functional-differential equations and their applications. Russian Math. Surveys 45, 87–120 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sansone, G.: Orthogonal Functions, 2nd ed. John Wiley and Sons Inc, New York (1977)

    MATH  Google Scholar 

  10. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J (1971)

  11. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  12. Ullrich, M.: On “Upper Error Bounds for Quadrature Formulas on Function Classes” by K. K. Frolov. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods, Springer Proceedings in Mathematics & Statistics, vol. 163, pp. 571–582. Springer, Switzerland (2016)

  13. Xu, Z., Milovanović, G.V., Xiang, S.: Efficient computation of highly oscillatory integrals with Hankel kernel. Appl. Math. Comput. 261, 312–322 (2015)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Zhang.

Additional information

Communicated by: Gitta Kutyniok

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novak, E., Ullrich, M., Woźniakowski, H. et al. Complexity of oscillatory integrals on the real line. Adv Comput Math 43, 537–553 (2017). https://doi.org/10.1007/s10444-016-9496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9496-6

Keywords

Mathematics Subject Classification (2010)

Navigation