Skip to main content

Homotopy analysis Sumudu transform method for time—fractional third order dispersive partial differential equation

Abstract

In this article, we apply the newly introduced numerical method which is a combination of Sumudu transforms and Homotopy analysis method for the solution of time fractional third order dispersive type PDE equations. It is also discussed generalized algorithm, absolute convergence and analytic result of the finite number of independent variables including time variable.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, California (1974)

    MATH  Google Scholar 

  2. 2.

    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Part II. Geophy. J. R. Astron. Soc. 13, 529–39 (1967)

    Article  Google Scholar 

  3. 3.

    Ross, B.: The development of fractional calculus 1695–1900. Hist. Math. 4, 75–89 (1977)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  5. 5.

    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  6. 6.

    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amstrdam (2006)

    MATH  Google Scholar 

  7. 7.

    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Jan Van Mill, North–Holland (2006)

    MATH  Google Scholar 

  8. 8.

    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, New York (2010)

    Book  MATH  Google Scholar 

  9. 9.

    Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional Order Systems: Modeling and Control Applications. WSPC, Singapore (2010)

    Book  Google Scholar 

  10. 10.

    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integration and Derivatives: Theory and Application. G & B, Amsterdam (1993)

    MATH  Google Scholar 

  11. 11.

    Uchaikin, V.V.: Self–similar anomalous diffusion and levy stable laws. Phys. Usp. 26(8), 821–849 (2003)

    Article  Google Scholar 

  12. 12.

    Tarasov, V.E.: Fractional generalization of gradient and Hamiltonian systems. J. Phys. A Math. Gen. 38(26), 5929–5943 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Laskin, N., Zaslavsky, G.M.: Nonlinear fractional dynamics of lattice with long–range interaction. Phys. A Stat. Mech. Appl. 368(1), 38–54 (2006)

    Article  Google Scholar 

  14. 14.

    Tarasov, V.E.: Gravitational field of fractal distribution of particles. Celest. Mech. Dyn. Astron. 94(1), 1–15 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Fujioka, J.: Lagrangian structure and Hamiltonian conservation in fractional optical solitons. Commun. Fract. Calc. 1(1), 1–14 (2010)

    Google Scholar 

  16. 16.

    Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  17. 17.

    El–Wakil, S.A., Abulwafa, E.M., El–Shewy, E.K., Mahmoud, A.A.: Time–fractional KdV equation for electron–acoustic waves in plasma of cold electron and two different temperature isothermal ions. Astrophys. Space Sci. 333(1), 269–267 (2011)

    Article  Google Scholar 

  18. 18.

    El–Wakil, S.A., Abulwafa, E.M., El–Shewy, E.K., Mahmoud, A.A.: Time–fractional study of electron acoustic solitary waves in plasma of cold electron and two isothermal ions. J. Plasma Phys. 78(6), 641–649 (2012)

    Article  Google Scholar 

  19. 19.

    Petr, I.: Fractional–Order Nonlinear Systems Modelin. Analysis and Simulation. Higher Education Press and Springer, Beijing (2011)

    Google Scholar 

  20. 20.

    Klafter, J., Lim, S.C., Metzler, R. (eds.): Fractional Dynamics: Recent Advances. World Scientific, Singapore (2012)

  21. 21.

    Baleanu, D., Tenreiro Machado, J.A., Luo, A.C.J. (eds.): Fractional Dynamics and Control. Springer, New York (2012)

  22. 22.

    Zhou, J.K.: Differential Transformation Applications for Electrical Circuits. Wuhan Huazhong University Press (1986)

  23. 23.

    Chen, C.K., Ho, S.H.: Solving partial differential equations by two–dimensional differential transform method. Appl. Math. Comput. 106(2–3), 171–179 (1999)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Jang, M.J., Cheng, C.L., Liu, Y.C.: Two–dimensional differential transform for partial differential equations. Appl. Math. Comput. 121(2–3), 261–270 (2001)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Yang, S., Xiao, A., Su, H.: Convergence of the variational iteration method for solving multi–order fractional differential equations. Comput. Math. Appl. 60(10), 2871–2879 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Wazwaz, A.M.: The variational iteration method for analytic treatment for linear and nonlinear ODEs. Appl. Math. Comput. 212(1), 120–134 (2009)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Saravanan, A., Magesh, N.: An efficient computational technique for solving the Fokker–Planck equation with space and time fractional derivatives. J. King Saud Univ. Sci. 28, 160–166 (2016)

    Article  Google Scholar 

  28. 28.

    Balaji, S.: Legendre wavelet operational matrix method for solution of fractional order Riccati differential equation. J. Egyptian Math. Soc. 23(2), 263–270 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Erturk, V.S., Momani, S., Odibat, Z.: Application of generalized differential transform method to multi–order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 13(8), 1642–1654 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Zhao, J., Tang, B., Kumar, S., Hou, Y.: The extended fractional sub–equation method for nonlinear fractional differential equations. Math. Probl. Eng 2012(11), 924956 (2012)

    MATH  Google Scholar 

  31. 31.

    He, J.H.: Asymptotology by homotopy perturbation method. Appl. Math. Comput. 156(3), 591–596 (2004)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    He, J.H.: The homotopy perturbation method for non–linear oscillators with discontinuities. Appl. Math. Comput. 151(1), 287–292 (2004)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    He, J.H.: A coupling method of a homotopy technique and a perturbation technique for nonlinear problems. Int. J. Non–Linear Mech. 35(1), 37–43 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    He, J.H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos Solit Fractals. 26(3), 695–700 (2000)

    Article  MATH  Google Scholar 

  35. 35.

    Liao, S.J.: The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. Thesis, Shanghai, Jiao Tong University (1992)

  36. 36.

    Liao, S.J.: Beyond Perturbation Introduction to the Homotopy Analysis Method. Chapman & Hall CRC Press, Washington DC (2004)

    MATH  Google Scholar 

  37. 37.

    Liao, S.J.: Homotopy Analysis Method in Nonlinear Differential Equations. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  38. 38.

    Liao, S.J.: Advances in the Homotopy Analysis Method. World Scientific Press, Singapore (2014)

    Book  MATH  Google Scholar 

  39. 39.

    Kumar, S.: An analytical algorithm for nonlinear fractional Fornberg–Whitham equation arising in wave breaking based on a new iterative method. Alexand. Eng. J. 53(1), 225–231 (2014)

    Article  Google Scholar 

  40. 40.

    Kumar, S., Singh, J., Kumar, D., Kapoor, S.: New homotopy analysis transform algorithm to solve volterra integral equation. Ain Shams Eng. J. 5(1), 243–246 (2014)

    Article  Google Scholar 

  41. 41.

    Yin, X.B., Kumar, S., Kumar, D.: A modified homotopy analysis method for solution of fractional wave equations. Adv. Mech. Eng. 7(12), 1–8 (2015)

    Article  Google Scholar 

  42. 42.

    Kumar, S., Kumar, A., Baleanu, D.: Two analytical methods for time–fractional nonlinear coupled Boussinesq–Burger‘s equations arise in propagation of shallow water waves. Nonlinear Dyn. 85(2), 699–715 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    Kumar, S., Kumar, D., Singh, J.: Fractional modelling arising in unidirectional propagation of long waves in dispersive media. Adv. Nonlinear Anal (2016). doi:10.1515/anona-2013-0033. ISSN (Online) 2191–950X, ISSN (Print) 2191–9496

  44. 44.

    Arikoglu, A., Ozkol, I.: Solution of a fractional differential equations by using differential transform method. Chaos Solit. Fractals. 34(4), 1473–1481 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  45. 45.

    Erturk, V.S., Momani, S.: Solving systems of fractional differential equations using differential transform method. J. Comput. Appl. Math. 215(1), 142–151 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Pandey, R.K., Mishra, H.K.: Homotopy analysis fractional Sumudu transform method for time–fractional fourth order differential equations with variable coefficients. Am. J. Numer. Anal. 3(3), 52–64 (2015)

    Google Scholar 

  47. 47.

    Waleed, H.: Solving nth –order integro–differential equations using the combined laplace transform–Adomian decomposition method. Am. J. Appl. Math. 4(6), 882–886 (2013)

    MathSciNet  Google Scholar 

  48. 48.

    Haghighi, A.R., Dadvand, A., Ghejlo, H.H.: Solution of the fractional diffusion equation with the Riesz fractional derivative using McCormack method. Commun. Adv. Comput. Sci. App. 2014(11), 00024 (2012)

    Google Scholar 

  49. 49.

    Watugala, G.K.: Sumudu transform–a new integral transform to solve differential equations and control engineering problems. Math. Eng. Ind. 6(4), 319–329 (1998)

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Weerakoon, S.: Application of Sumudu transform to partial differential equations. Int. J. Math. Educ. Sci. Tech. 25(2), 277–283 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  51. 51.

    Weerakoon, S.: Complex inversion formula for Sumudu transform. Int. J. Math. Educ. Sci. Tech. 29(4), 618–621 (1998)

    MathSciNet  MATH  Google Scholar 

  52. 52.

    Belgacem, F.B.M., Karaballi, A.A., Kalla, S.L.: Analytical investigations of the Sumudu transform and applications to integral production equations. Math. Probl. Eng. 2003(3), 103–118 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  53. 53.

    Belgacem, F.B.M., Karaballi, A.A.: Sumudu transform fundamental properties investigations and applications. J. Appl. Math. Stoch. Anal. 2006(23), 91083 (2006)

    MathSciNet  MATH  Google Scholar 

  54. 54.

    Belgacem, F.B.M.: Introducing and analysing deeper Sumudu properties. Nonlinear Studies 13(1), 23–41 (2006)

    MathSciNet  MATH  Google Scholar 

  55. 55.

    Hussain, M.G.M., Belgacem, F.B.M.: Transient solutions of Maxwell‘s equations based on Sumudu transform. Prog. Electromagn. Res. 74, 273–289 (2007)

    Article  Google Scholar 

  56. 56.

    Belgacem, F.B.M.: Sumudu applications to Maxwell‘s equations. Prog. Electromagn. Res. 5(4), 355–360 (2009)

    MathSciNet  Google Scholar 

  57. 57.

    Belgacem, F.B.M.: Sumudu transform applications to bessel functions and equations. Appl. Math. Sci. 4(74), 3665–3686 (2010)

    MathSciNet  MATH  Google Scholar 

  58. 58.

    Gupta, V.G., Sharma, B., Belgacem, F.B.M.: On the solutions of generalized fractional kinetic equations. Appl. Math. Sci. 5(19), 899–910 (2011)

    MathSciNet  MATH  Google Scholar 

  59. 59.

    Katatbeh, Q.D., Belgacem, F.B.M.: Applications of the Sumudu transform to fractional differential equations. Nonlinear Studies 18(1), 99–112 (2011)

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Guerrero, F., Santonja, F.J., Villanueva, R.J.: Solving a model for the evolution of smoking habit in Spain with homotopy analysis method. Nonlinear Anal. Real World Appl. 14(1), 549–558 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  61. 61.

    Jafari, H., Firoozjaee, M.: A multistage homotopy analysis method for solving non–linear Riccati differential equations. IJRRAS 4(2), 128–132 (2010)

    MATH  Google Scholar 

  62. 62.

    Alomari, A.K., Noorani, M.S.M., Nazar, R., Li, C.P.: Homotopy analysis method for solving fractional Lorenz system. Commun. Nonlinear Sci. Numer. Simulat. 15(7), 1864–1872 (2010)

    Article  MATH  Google Scholar 

  63. 63.

    Elsaid, A.: Homotopy analysis method for solving a class of fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simulat. 16(9), 3655–3664 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  64. 64.

    Mohyud–Din, S.T., Yldrm, A., Ylkl, E.: Homotopy analysis method for space– and time–fractional kdv equation. Int. J. Numer. Method H. 22(7), 928–941 (2012)

    MathSciNet  Article  Google Scholar 

  65. 65.

    Fadravi, H.H., Nik, H.S., Buzhabadi, R.: Homotopy analysis method for solving foam drainage equation with space– and time–fractional derivatives. Int. J. Differ. Equ. 2011(12), 237045 (2011)

    MathSciNet  MATH  Google Scholar 

  66. 66.

    Djidjeli, K., Twizell, E.H.: Global extrapolations of numerical methods for solving a third–order dispersive partial differential equations. Int. J. Comput. Math. 41(1–2), 81–89 (1999)

    MATH  Google Scholar 

  67. 67.

    Twizell, E.H.: Computational Methods for Partial Differential Equations. Ellis Horwood New York: Chichester and John Wiley and Sons (1984)

  68. 68.

    Lewson, J.D., Morris, J.L.I.: The extrapolation of first–order methods for parabolic partial differential equations. I. SIAM J. Numer. Anal. 15(6), 1212–12124 (1978)

    MathSciNet  Article  MATH  Google Scholar 

  69. 69.

    Mengzhao, Q.: Difference scheme for the dispersive equation. Computing 31, 261–261 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  70. 70.

    Wazwaz, A.M.: An analytic study on the third–order dispersive partial differential equation. Appl. Math. Comput. 142(2–3), 511–520 (2003)

    MathSciNet  MATH  Google Scholar 

  71. 71.

    Kanth, A.S.V.R., Aruna, K.: Solution of fractional third–order dispersive partial differential equations. J. Egyptian Math. Soc. 2(3), 190–199 (2015)

    Google Scholar 

  72. 72.

    Luchko, Y., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta. Math. Vietnamica. 24(2), 207–233 (1999)

    MathSciNet  MATH  Google Scholar 

  73. 73.

    Moustafa, O.L.: On the Cauchy problem for some fractional order partial differential equations. Chaos Solit Fractals. 18(1), 135–140 (2003)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hradyesh Kumar Mishra.

Additional information

Communicated by: Helge Holden

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pandey, R.K., Mishra, H.K. Homotopy analysis Sumudu transform method for time—fractional third order dispersive partial differential equation. Adv Comput Math 43, 365–383 (2017). https://doi.org/10.1007/s10444-016-9489-5

Download citation

Keywords

  • Dispersive partial differential equation
  • Homotopy analysis method
  • Homotopy analysis Sumudu transform method
  • Linear and nonlinear partial differential equation

Mathematics Subject Classification (2010)

  • 26A33
  • 34A08
  • 60G22
  • 65Gxx