Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A parameter choice strategy for the inversion of multiple observations

  • 128 Accesses

  • 1 Citations


In many geoscientific applications, multiple noisy observations of different origin need to be combined to improve the reconstruction of a common underlying quantity. This naturally leads to multi-parameter models for which adequate strategies are required to choose a set of ‘good’ parameters. In this study, we present a fairly general method for choosing such a set of parameters, provided that discrete direct, but maybe noisy, measurements of the underlying quantity are included in the observation data, and the inner product of the reconstruction space can be accurately estimated by the inner product of the discretization space. Then the proposed parameter choice method gives an accuracy that only by an absolute constant multiplier differs from the noise level and the accuracy of the best approximant in the reconstruction and in the discretization spaces.

This is a preview of subscription content, log in to check access.


  1. 1.

    Bauer, F., Gutting, M., Lukas, M.A.: Evaluation of parameter choice methods for regularization of ill-posed problems in geomathematics. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics. 2nd edn. Springer (2015)

  2. 2.

    Bauer, F., Lukas, M.A.: Comparing parameter choice methods for regularization of ill-posed problems. Math. Comp. 81, 1795–1841 (2011)

  3. 3.

    Brezinski, C., Redivo-Zaglia, M., Rodriguez, G., Seatzu, S.: Multi-parameter regularization techniques for ill-conditioned linear systems. Num. Math. 94, 203–228 (2003)

  4. 4.

    CHAMP. http://www.gfz-potsdam.de/champ/

  5. 5.

    Chen, J., Pereverzyev, S. Jr., Xu, Y.: Aggregation of regularized solutions from multiple observation models. Inverse Prob. 31, 075005 (2015)

  6. 6.

    Drinkwater, M.R., Floberghagen, R., Haagmans, R., Muzi, D., Popescu, A.: GOCE: ESA’s first Earth explorer core mission. In: Beutler, G.B., Drinkwater, M.R., Rummel, R., Von Steiger, R. (eds.) Earth Gravity Field from Space - from Sensors to Earth Sciences. Kluwer Academic Publishers (2003)

  7. 7.

    Driscoll, J.R., Healy, M. H. Jr.: Computing fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15, 202–250 (1994)

  8. 8.

    Freeden, W.: On approximation by harmonic splines. Manuscr. Geod. 6, 193–244 (1981)

  9. 9.

    Freeden, W.: Multiscale modelling of spaceborne geodata (1999)

  10. 10.

    Friis-Christensen, E., Lühr, H., Hulot, G.: Swarm: A constellation to study the Earth’s magnetic field. Earth Planet. Space 58, 351–358 (2006)

  11. 11.

    Gerhards, C.: A combination of downward continuation and local approximation for harmonic potentials. Inverse Prob. 30, 085004 (2014)

  12. 12.

    GRACE. http://www.jpl.nasa.gov/missions/gravity-recovery-and-climate-experiment-grace/

  13. 13.

    Haines, G.V.: Spherical cap harmonic analysis. J. Geophys. Res. 90, 2583–2591 (1985)

  14. 14.

    Hesse, K., Sloan, I., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics. Springer (2010)

  15. 15.

    Hesse, K., Womersley, R.S.: Numerical integration with polynomial exactness over a spherical cap. Adv. Comp. Math. 36, 451–483 (2012)

  16. 16.

    Koch, K.R., Kusche, J.: Regularization of geopotential determination from satellite data by variance components. J. Geod. 76, 259–268 (2002)

  17. 17.

    Lu, S., Pereverzyev, S.: Multi-parameter regularization and its numerical realization. Num. Math. 118, 1–31 (2011)

  18. 18.

    Lu, S., Pereverzyev, S.: Multiparameter regularization in downward continuation of satellite data. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics. 2nd edn. Springer (2015)

  19. 19.

    Merrick, J.R.: Aggregation of forecasts from multiple simulation models. In: Pasupathy, R., Kim, S.-H., Tolk, A., Hill, R., Kuhl, M.E. (eds.) Proceedings of the 2013 Winter Simulation Conference (2013)

  20. 20.

    Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. 117, B04406 (2012)

  21. 21.

    Pereverzyev, S., Schock, E.: Error estimates for band-limited spherical regularization wavelets in an inverse problem of satellite geodesy. Inverse Probl. 15, 881–890 (1999)

  22. 22.

    Pilkington, M.: Aeromagnetic surveying. In: Gubbins, D., Herrero-Bervera, E. (eds.) Encyclopedia of Geomagnetism and Paleomagnetism. Springer (2007)

  23. 23.

    Shure, L., Parker, R.L., Backus, G.E.: Harmonic splines for geomagnetic modeling. Phys. Earth Planet. Inter. 28, 215–229 (1982)

  24. 24.

    Simons, F.J., Dahlen, F.A., Wieczorek, M.A.: Spatiospectral localization on a sphere. SIAM Rev. 48, 505–536 (2006)

  25. 25.

    Thébault, E., Schott, J.J., Mandea, M.: Revised spherical cap harmonic analysis (RSCHA): validation and properties. J. Geophys. Res. 111, B01102 (2006)

Download references

Author information

Correspondence to Pavlo Tkachenko.

Additional information

Communicated by: Jan Hesthaven.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerhards, C., Pereverzyev, S. & Tkachenko, P. A parameter choice strategy for the inversion of multiple observations. Adv Comput Math 43, 101–112 (2017). https://doi.org/10.1007/s10444-016-9477-9

Download citation


  • Parameter choice
  • Multiple observations
  • Spherical approximation