Advances in Computational Mathematics

, Volume 43, Issue 1, pp 25–43 | Cite as

Approximation by planar elastic curves

  • David Brander
  • Jens Gravesen
  • Toke Bjerge Nørbjerg


We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient-driven optimization is then used to find the approximating elastic curve.


Euler elastica Splines Approximation 

Mathematics Subject Classification (2010)

41A15 65D07 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birkhoff, G., Boor, C.D.: Piecewise polynomial interpolation and approximation. In: Garabedian, H.L. (ed.) Approximation of functions, Proceedings general motors symposium 1964, pp 164–190. Elsevier Publ. Co., Amsterdam (1965)Google Scholar
  2. 2.
    Borbély, A., Johnson, M.: Elastic splines I: existence. Constr Approx 40, 189–218 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brander, D., Bærentzen, A., Evgrafov, A., Gravesen, J., Markvorsen, S., Nørbjerg, T., Nørtoft, P., Steenstrup, K.: Hot blade cuttings for the building industry. PreprintGoogle Scholar
  4. 4.
    Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes; Additamentum I: de curvis elasticis (1744). Translation: [Oldfather, W.A., Ellis, C.A., Brown, D.M.: Leonhard Euler’s elastic curves. Isis 20(1), pp. 72–160 (1933).]
  5. 5.
    Golomb, M., Jerome, J.: Equilibria of the curvature functional and manifolds of nonlinear interpolating spline curves. SIAM J. Math. Anal. 13, 421–458 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Horn, B.: The curve of least energy. ACM Trans. Math. Software 9, 441–460 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lawden, D.: Elliptic functions and applications applied mathematical sciences, vol. 80. Springer, New York (1989)CrossRefGoogle Scholar
  8. 8.
    Levien, R.: From spiral to spline; optimal techniques for interactive curve design. Ph.D. thesis, UC Berkeley (2009)Google Scholar
  9. 9.
    Levyakov, S.V., Kuznetsov, V.V.: Stability analysis of planar equilibrium configurations of elastic rods subjected to end loads. Acta Mech. 211, 73–87 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Love, A.: A treatise on the mathematical theory of elasticity. Cambridge University Press (1906)Google Scholar
  11. 11.
    Malcolm, M.: On the computation of nonlinear spline functions. SIAM J. Numer. Anal. 14, 254–282 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mehlum, E.: Nonlinear splines. In: Computer aided geometric design (Proc. Conf., Univ. Utah, Salt Lake City, Utah, 1974), 173–207 (1974)Google Scholar
  13. 13.
    Mumford, D.: Elastica and computer vision. In: Algebraic Geometry and Its Applications (West Lafayette, IN, 1990), pp 491–506. Springer, New York (1994)Google Scholar
  14. 14.
    Saalschütz, L.: Der Belastete Stab Unter Einwirkung Einer Seitlichen Kraft. B.G. Teubner, Leipzig (1880)zbMATHGoogle Scholar
  15. 15.
    Søndergaard, A., Feringa, J., Nøbjerg, T., Steenstrup, K., Brander, D., Gravesen, J., Markvorsen, S., Bærentzen, A., Petkov, K., Hattel, J., Clausen, K., Jensen, K., Knudsen, L., Kortbek, J.: Robotic hot-blade cutting. In: Robotic fabrication in architecture, art and design 2016, pp 150–164. Springer International PublishingGoogle Scholar
  16. 16.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program., Ser. A 106, 25–57 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkLyngbyDenmark

Personalised recommendations