Abstract
In this paper, we investigate the application of radial basis functions (RBFs) for the approximation with collocation of the Stokes problem. The approximate solution is constructed in a multi-level fashion, each level using compactly supported radial basis functions with decreasing scaling factors. We use symmetric collocation and give sufficient conditions for convergence and consider stability analysis. Numerical experiments support the theoretical results.
This is a preview of subscription content, access via your institution.
References
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3 edn. Texts in Applied Mathematics Springer (2008)
Burman, E.: Pressure projection stabilizations for Galerkin approximations of stokes’ and darcy’s problem. Numer Methods Partial Differ. Equ 24, 127–143 (2008)
Chernih, A., Le Gia, Q.T.: Multiscale methods with compactly supported radial basis functions for Galerkin approximation of elliptic PDEs. IMA J. Numer. Anal 34(2), 569–591 (2014)
Devore, R.A., Sharpley, R.C.: Besov spaces on domains in ℝd. Trans. Amer. Math. Soc 335, 843–864 (1993)
Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co., Singapore (2007)
Floater, M.S., Iske, A.: Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math 73, 65–78 (1996)
Fuselier, E.: Improved stability estimates and a characterization of the native space for matrix-valued rbfs. Adv. Comput. Math 29, 269–290 (2008)
Fuselier, E.: Sobolev-type approximation rates for divergence-free and curl-free rbf interpolants. Math. Comput 77, 1407–1423 (2008)
Giesl, P., Wendland, H.: Meshless collocation: Error estimates with application to dynamical systems. SIAM J. Numer. Anal 45, 1723–1741 (2007)
Le Gia, Q.T., Sloan, I.H., Wendland, H.: Multiscale analysis in Sobolev spaces on the sphere. SIAM J. Numer. Anal 48, 2065–2090 (2010)
Le Gia, Q.T., Sloan, I.H., Wendland, H.: Multiscale RBF collocation for solving PDEs on spheres. Numer. Math 121, 99–125 (2012)
Lowitzsch, S.: A density theorem for matrix-valued radial basis functions. Numer. Algorithms 39, 253–256 (2005)
Lowitzsch, S.: Error estimates for matrix-valued radial basis function interpolation. J. Approx. Theory 137, 234–249 (2005)
Narcowich, F.J., Ward, J.D.: Generalized Hermite interpolation via matrix-valued conditionally positive definite functions. Math. Comput 63, 661–687 (1994)
Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput 74, 743–763 (2005)
Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx 24, 175–186 (2006)
Schaback, R.: On the efficiency of interpolation by radial basis functions. In: Le Méhauté, C.R. A., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, 309-318. Vanderbilt University Press (1996)
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. AMS Chelsea Publishing, North-Holland (1977)
Wendland, H.: Scattered Data Approximation Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)
Wendland, H.: Divergence-free kernel methods for approximating the Stokes problem. SIAM J. Numer. Anal 47, 3158–3179 (2009)
Wendland, H.: Multiscale analysis in Sobolev spaces on bounded domains. Numer. Math 116, 493–517 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Robert Schaback
This work was supported by the Australian Research Council.
Rights and permissions
About this article
Cite this article
Chernih, A., Le Gia, Q.T. Multiscale methods with compactly supported radial basis functions for the Stokes problem on bounded domains. Adv Comput Math 42, 1187–1208 (2016). https://doi.org/10.1007/s10444-016-9458-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-016-9458-z