Skip to main content
Log in

On structural decompositions of finite frames

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A frame in an n-dimensional Hilbert space H n is a possibly redundant collection of vectors {f i } iI that span the space. A tight frame is a generalization of an orthonormal basis. A frame {f i } iI is said to be scalable if there exist nonnegative scalars {c i } iI such that {c i f i } iI is a tight frame. In this paper we study the combinatorial structure of frames and their decomposition into tight or scalable subsets by using partially-ordered sets (posets). We define the factor poset of a frame {f i } iI to be a collection of subsets of I ordered by inclusion so that nonempty JI is in the factor poset iff {f j } jJ is a tight frame for H n . We study various properties of factor posets and address the inverse factor poset problem, which inquires when there exists a frame whose factor poset is some given poset P. We then turn our attention to scalable frames and present partial results regarding when a frame can be scaled to have a given factor poset; in doing so we present a bridge between erasure resilience (as studied via prime tight frames) and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlswede, R., Zhang, Z.: An identity in combinatorial extremal theory. Adv. Math. 80, 137–151 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aicholzer, O.: Combinatorial and computational properties of the hypercube. Ph.D. thesis, TU-Graz (1997)

  3. Alexeev, B., Cahill, J., Mixon, D.G.: Full spark frames. J. Fourier Anal. Appl. 18, 1167–1194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berry, K., Copenhaver, M.S., Evert, E., Kim, Y.H., Klingler, T., Narayan, S.K., Nghiem, S.: Factor posets of frames and dual frames in finite dimensions. to appear in Involve (2015)

  5. Bertsekas, D.P.: Constrained optimization and Lagrange multiplier methods (1982)

  6. Bertsekas, D.P: Nonlinear programming, 2nd ed. (1999)

  7. Bodmann, B.G., Paulsen, V.I.: Frames, graphs, and erasures. Lin. Alg. Appl. 404, 118–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bollobás, B.: On generalized graphs. Acta Math. Acad. Scient. Hung. 16, 447–452 (1965)

    Article  MATH  Google Scholar 

  9. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)

    Article  MATH  Google Scholar 

  10. Cahill, J., Chen, X.: A note on scalable frames. Proc. SampTA (2013)

  11. Calkin, N.: Factors of sums of powers of binomial coefficients. Acta Arithmetica 86, 17–26 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Casazza, P.G., Kovacevic, J.: Equal-norm tight frames with erasures. Adv. Comp. Math. 18, 387–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Casazza, P.G., Kutyniok, G. (eds.): Finite frames (theory and applications). Birkhäuser (2013)

  14. Casazza, P.G., Leon, M.T.: Projections of frames. Proc. SPIE 5914, 277–289 (2005)

    Google Scholar 

  15. Chen, X., Kutyniok, G., Okoudjou, K.A., Philipp, F., Wang, R.: Measures of scalability. Available at arXiv:1406.2137 (2014)

  16. Christensen, O.: An introduction to frames and Riesz bases. Birkhäuser (2003)

  17. Copenhaver, M.S., Kim, Y.H., Logan, C., Mayfield, K., Narayan, S.K., Petro, M.J., Sheperd, J.: Diagram vectors and tight frame scaling in finite dimensions. Operators and Matrices 8, 78–88 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Copenhaver, M.S., Kim, Y.H., Logan, C., Mayfield, K., Narayan, S.K., Sheperd, J.: Maximum robustness and surgery of frames in finite dimensions. Lin. Alg. Appl. 439, 1330–1339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT Press (2009)

  20. Daubechies, I.: Ten lectures on wavelets. SIAM (1992)

  21. Daubechies, I., Grossman, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eldar, Y.C., Kutyniok, G. (eds.): Compressed sensing: theory and applications. Cambridge University Press (2012)

  24. Füredi, Z: The maximum number of balancing sets. Graphs Comb. 3, 251–254 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Goyal, V.K., Kovacevic, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comp. Harm. Anal. 10, 203–233 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for Undergraduates, American Mathematical Society. Providence, Rhode Island (2007)

    MATH  Google Scholar 

  27. Han, D., Larson, D.R.: Frames, bases, and group representations, no. 697. Memoirs of the American Mathematical Society (2000)

  28. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Lin. Alg. Appl. 377, 31–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. Assoc. Comput. Mach. 21(2), 277–292 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kutyniok, G., Okoudjou, K.A., Philipp, F: Scalable frames and convex geometry. Contemp. Math. 626, 19–42 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kutyniok, G., Okoudjou, K.A., Philipp, F., Tuley, E.K.: Scalable frames. Lin. Alg. Appl. 438, 2225–2238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lemvig, J., Miller, C., Okoudjou, K.A.: Prime tight frames. Adv. Comput. Math. 40, 315–334 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. Ser. B 103, 251–82 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nabeya, S.: On the maximum number of balancing subsets. J. Math. Econ. 13, 123–126 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Narayan, S.K., Radzwion, E.L., Rimer, S.P., Tomasino, R.L., Wolfe, J.L., Zimmer, A.M.: Robustness and surgery of frames. Lin. Alg. Appl. 434, 1893–1901 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Püschel, M., Kovacevic, J.: Real tight frames with maximal robustness to erasures. Proc. Data. Compr. Conf. (2005)

  37. Floudas, C.A., Misener, R., Thompson, J.P.: APOGEE: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35, 876–892 (2011)

    Article  Google Scholar 

  38. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Zeit. 27, 544–548 (1928). (German)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stanley, R.: Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Alg. Disc. Meth. 1(2) (1980)

  40. Tawarmalani, M., Sahinidis, N.V.: Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications. In: Nonconvex Optimization and its Applications, vol. 65. Kluwer Acad. Publish. (2002)

  41. Ziegler, G: Lectures on polytopes, revised ed.. In: Graduate Texts in Mathematics, vol. 152. Springer (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin S. Copenhaver.

Additional information

Communicated by: Yang Wang

Research supported by NSF-REU Grant DMS 11-56890.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, A.ZY., Copenhaver, M.S., Narayan, S.K. et al. On structural decompositions of finite frames. Adv Comput Math 42, 721–756 (2016). https://doi.org/10.1007/s10444-015-9440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9440-1

Keywords

Mathematics Subject Classification (2010)

Navigation