Skip to main content
Log in

A primal-mixed formulation for the strong coupling of quasi-Newtonian fluids with porous media

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work we analyze a primal-mixed finite element method for the coupling of quasi-Newtonian fluids with porous media in 2D and 3D. The flows are governed by a class of nonlinear Stokes and linear Darcy equations, respectively, and the transmission conditions on the interface between the fluid and the porous medium are given by mass conservation, balance of normal forces and the Beavers-Joseph-Saffman law. We apply a primal formulation in the Stokes domain and a mixed formulation in the Darcy formulation. The “strong coupling” concept means that the conservation of mass across the interface is introduced as an essential condition in the space where the velocity unknowns live. In this way, under some assumptions on the nonlinear kinematic viscosity, a generalization of the Babuška-Brezzi theory is utilized to show the well posedness of the primal-mixed formulation. Then, we introduce a Galerkin scheme in which the discrete conservation of mass is imposed approximately through an orthogonal projector. The unique solvability of this discrete system and its Strang-type error estimate follow from the generalized Babuška-Brezzi theory as well. In particular, the feasible finite element subspaces include Bernadi-Raugel elements for the Stokes flow, and either the Raviart-Thomas elements of lowest order or the Brezzi-Douglas-Marini elements of first order for the Darcy flow, which yield nonconforming and conforming Galerkin schemes, respectively. In turn, piecewise constant functions are employed to approximate in both cases the global pressure field in the Stokes and Darcy domain. Finally, several numerical results illustrating the good performance of both discrete methods and confirming the theoretical rates of convergence, are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernardi, C., Hecht, F., Pironneau, O.: Coupling Darcy and Stokes equations for porous media with cracks. ESAIM: Mathematical Modelling and Numerical Analysis 39(1), 7–35 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comput. 44(169), 71–79 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer (1991)

  5. Discacciati, M.: Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows. Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne (2004)

  6. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1-2), 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47(2), 929–952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupling nonlinear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 61(11), 1198–1222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. SpringerBriefs in Mathematics, Springer, Cham (2014)

  11. Gatica, G.N.: Solvability and Galerkin approximations of a class of nonlinear operator equations. Zeitschrift fur Analysis und ihre Anwendungen 21(3), 761–781 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gatica, G.N., Heuer, N., Meddahi, S.: On the numerical analysis of nonlinear twofold saddle point problems. IMA J. Numer. Anal. 23(2), 301–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gatica, G.N., Meddahi, S., Oyarzúa, R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29(1), 86–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer (1986)

  15. Karper, T., Mardal, K.-A., Winther, R.: Unified finite element discretizations of coupled Darcy-Stokes flow. Numerical Methods for Partial Differential Equations 25(2), 311–326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ladyzhenskaya, O.: New equations for the description of the viscous incompressible fluids and solvability in the large for the boundary value problems of them. In: Boundary Value Problems of Mathematical Physics V, Providence, RI: AMS (1970)

  17. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Loula, A.F.D., Guerreiro, J.N.C.: Finite element analysis of nonlinear creeping flows. Comput. Methods Appl. Mech. Eng. 79(1), 87–109 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Márquez, A., Meddahi, S., Sayas, F.-J.: Strong coupling of finite element methods for the Stokes-Darcy problem. IMA J. Numer. Anal. 35(2), 969–988 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Necas, J.: Introduction to the Theory of Nonlinear Elliptic Equations. Wiley (1986)

  21. Riviere, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sandri, D.: Sur l’approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. ESAIM: Mathematical Modelling and Numerical Analysis 27(2), 131–155 (1993)

    MathSciNet  Google Scholar 

  23. Scheurer, B.: Existence et approximation de points selles pour certains problemes non lineaires. RAIRO Analyse Numerique 11(4), 369–400 (1977)

    MathSciNet  MATH  Google Scholar 

  24. Urquiza, J.M., NDri, D., Garon, A., Delfour, M.C.: Coupling Stokes and Darcy equations. Appl. Numer. Math. 58(5), 525–538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xie, X., Xu, J., Xue, G.: Uniformly stable finite element methods for Darcy-Stokes-Brinkman models. J. Comput. Math. 26(3), 437–455 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel N. Gatica.

Additional information

Communicated by: Axel Voigt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez, S., Gatica, G.N., Márquez, A. et al. A primal-mixed formulation for the strong coupling of quasi-Newtonian fluids with porous media. Adv Comput Math 42, 675–720 (2016). https://doi.org/10.1007/s10444-015-9439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9439-7

Keywords

Mathematics Subject Classification (2010)

Navigation