Advances in Computational Mathematics

, Volume 42, Issue 2, pp 469–488 | Cite as

Integral equation methods for the Yukawa-Beltrami equation on the sphere



An integral equation method for solving the Yukawa-Beltrami equation on a multiply-connected sub-manifold of the unit sphere is presented. A fundamental solution for the Yukawa-Beltrami operator is constructed. This fundamental solution can be represented by conical functions. Using a suitable representation formula, a Fredholm equation of the second kind with a compact integral operator needs to be solved. The discretization of this integral equation leads to a linear system whose condition number is bounded independent of the size of the system. Several numerical examples exploring the properties of this integral equation are presented.


Yukawa-Beltrami boundary value problems Integral equations 

Mathematics Subject Classification (2010)

35J25 45B05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpert, B.K.: Hybrid Gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 20, 1551–1584 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ascher, U., Ruuth, S., Wetton, B.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bertalmio, M., Cheng, L.T., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174(2), 759–780 (2001). doi: 10.1006/jcph.2001.6937. http://www. MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bonner, B, Graham, I, Smyshlyaev, V: The computation of conical diffraction coefficients in high-frequency acoustic wave scattering. SIAM J. Numer. Anal. 43(3), 1202–1230 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chaplain, M., Ganesh, M., Graham, I.: Spatio-temporal pattern formation on spherical surfaces: Numerical simulation and application to solid tumour growth. J. Math. Biology 42, 387–423 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory, vol. 93 Springer Science & Business Media (2012)Google Scholar
  7. 7.
    Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Dodgson, N.A. , Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for geometric modelling, mathematics and visualization, pp 157–186. Springer, Berlin (2005), doi: 10.1007/3-540-26808-1_9
  8. 8.
    Gatica, G.N., Hsiao, G.C., Sayas, F.J.: Relaxing the hypotheses of Bielak-MacCamy’s BEM-FEM coupling. Numer. Math. 120(3), 465–487 (2012). doi: 10.1007/s00211-011-0414-z MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gemmrich, S., Nigam, N., Steinbach, O.: Boundary integral equations for the Laplace-Beltrami Operator. Mathematics and Computation, a Contemporary View 3, 21–37 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kropinski, M., Quaife, B.: Fast integral equation methods for the modified Helmholtz equation. J. Comput. Phys. 230, 425–434 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kropinski, M.C.A., Nigam, N.: Fast integral equation methods of the Laplace-Beltrami equation on the sphere. Adv. Comput. Math. 40, 577–596 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kropinski, M.C.A., Quaife, B.: Fast integral equation methods for rothe’s method applied to the isotropic heat equation. Comput. Math. Appl 61(9), 2436–2446 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lebedev, N.N.: Special functions and their applications. Dover Publications Inc., New York (1972). Revised edition, translated from the Russian and edited by Richard A. Silverman, Unabridged and corrected republicationGoogle Scholar
  14. 14.
    Lindblom, L., Szilágyi, B.: Solving partial differential equations numerically on manifolds with arbitrary spatial topologies. J. Comput. Phys. 243, 151–175 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mitrea, M., Taylor, M.: Boundary layer methods for lipschitz domains in riemannian manifolds. J. Funct. Anal. 163, 181–251 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Myers, T., Charpin, J.: A mathematical model for atmospheric ice accretion and water flow on a cold surface. Int. J. Heat Mass Transf. 47(25), 5483–5500 (2004). doi: 10.1016/j.ijheatmasstransfer.2004.06.037. CrossRefMATHGoogle Scholar
  17. 17.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST handbook of mathematical functions. U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC (2010). With 1 CD-ROM (Windows, Macintosh and UNIX)Google Scholar
  18. 18.
    Quaife, B.: Fast integral equation methods for the modified helmholtz equation. Simon Fraser University, Ph.D. thesis (2011)MATHGoogle Scholar
  19. 19.
    Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227(3), 1943–1961 (2008). doi: 10.1016/ article/pii/S002199910700441X MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Witkin, A., Kass, M.: Reaction-diffusion textures. SIGGRAPH Comput. Graph. 25(4), 299–308 (1991). doi: 10.1145/127719.122750 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada
  2. 2.Department of Scientific ComputingFlorida State UniversityTallahasseeUSA

Personalised recommendations