Skip to main content
Log in

QCMC: quasi-conformal parameterizations for multiply-connected domains

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript


This paper presents a method to compute the quasi-conformal parameterization (QCMC) for a multiply-connected 2D domain or surface. QCMC computes a quasi-conformal map from a multiply-connected domain S onto a punctured disk D S associated with a given Beltrami differential. The Beltrami differential, which measures the conformality distortion, is a complex-valued function \(\mu :S\to \mathbb {C}\) with supremum norm strictly less than 1. Every Beltrami differential gives a conformal structure of S. Hence, the conformal module of D S , which are the radii and centers of the inner circles, can be fully determined by μ, up to a Möbius transformation. In this paper, we propose an iterative algorithm to simultaneously search for the conformal module and the optimal quasi-conformal parameterization. The key idea is to minimize the Beltrami energy with the conformal module of the parameter domain incorporated. The optimal solution is our desired quasi-conformal parameterization onto a punctured disk. The parameterization of the multiply-connected domain simplifies numerical computations and has important applications in various fields, such as in computer graphics and vision. Experiments have been carried out on synthetic data together with real multiply-connected Riemann surfaces. Results show that our proposed method can efficiently compute quasi-conformal parameterizations of multiply-connected domains and outperforms other state-of-the-art algorithms. Applications of the proposed parameterization technique have also been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Dominitz, A., Tannenbaum, A.: Texture mapping via optimal mass transport. IEEE Trans. Vis. Comput. Graph 16(3), 419–433 (2010)

    Article  Google Scholar 

  2. Tutte, W.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph 21(3), 362–371 (2002)

    Google Scholar 

  3. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: SIGGRAPH ’95 Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 173–182 (1995)

  4. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Convex representation of graphs. In: Proceeding of London Mathematical Society, vol. 10 (1960)

  5. Floater, M.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(3), 231–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G., Halle, M.: Conformal surface parameterization for texture mapping. IEEE Trans. Vis. Comput. Graph. 6, 181–189 (2000)

    Article  Google Scholar 

  7. Gardiner, F., Lakic, N.: Quasiconformal Teichmuller Theory. American Mathematics Society (2000)

  8. Fischl, B., Sereno, M., Tootell, R., Dale, A.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping 8, 272–284 (1999)

    Article  Google Scholar 

  9. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus zero surface conformal mapping and its application to brain, surface mapping. IEEE Trans. Med. Imag. 23(8), 949–958 (2004)

    Article  Google Scholar 

  10. Wang, Y., Lui, L.M., Gu, X., Hayashi, K.M., Chan, T.F., Toga, A.W., Thompson, P.M., Yau, S.-T.: Brain surface conformal parameterization using Riemann surface structure. IEEE Trans. Med. Imag. 26(6), 853–865 (2007)

    Article  Google Scholar 

  11. Gu, X., Yau, S.: Computing conformal structures of surfaces. Comm. Inf. Syst. 2(2), 121–146 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Hurdal, M.K., Stephenson, K.: Discrete conformal methods for cortical brain flattening. Neuroimage 45, 86–98 (2009)

    Article  Google Scholar 

  13. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  14. Lui, L.M., Wong, T.W., Gu, X.F., Chan, T.F., Yau, S.T.: Compression of surface diffeomorphism using beltrami coefficient. IEEE Comput. Vis. Pattern Recog. (CVPR), 2839–2846 (2010)

  15. Lui, L.M., Wong, T.W., Zeng, W., Gu, X.F., Thompson, P.M., Chan, T.F., Yau, S.T.: Optimization of surface registrations using Beltrami holomorphic flow. J. Sci. Comput. 50(3), 557–585 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lui, L.M., Wong, T.W., Gu, X.F., Thompson, P.M., Chan, T.F., Yau, S.T.: Hippocampal shape registration using Beltrami Holomorphic flow. In; Medical Image Computing and Computer Assisted Intervention (MICCAI), Part II, (LNCS), vol. 6362, pp. 323–330 (2010)

  17. Ng, T.C., Gu, X.F., Lui, L.M.: Computing extremal teichm?ller map of multiply-connected domains via beltrami holomorphic flow. J. Sci. Comput. doi:10.1007/s10915-013-9791-z (2013)

  18. Zeng, W., Lui, L.M., Luo, F., Chan, T.F., Yau, S.T., Gu, X.F.: Computing quasiconformal maps using an auxiliary metric and discrete curvature flow. Numerische Mathematik 121(4), 671–703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lui, L.M., Lam, K.C., Wong, T.W., Gu, X.F.: Texture map and video compression using Beltrami representation. SIAM J. Imag. Sci. 6(4), 1880–1902 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lui, L.M., Zeng, W., Yau, S.T., Gu, X.F.: Shape analysis of planar multiply-connected objects using conformal welding. IEEE Trans. Pattern Anal. Mach. Intell. doi:10.1109/TPAMI.2013.215 (2013)

  21. Mullen, P., Tong, Y., Alliez, P., Desbrun, M.: Spectral conformal parameterization. computer graphics forum 27(5), 1487–1494 (2008)

    Article  Google Scholar 

  22. Zeng, W., Gu, X.: Registration for 3D surfaces with large deformations using quasi-conformal curvature flow. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR?11). Colorado Springs (2011)

  23. Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface Ricci flow. IEEE Trans. Vis. Comput. Graph. 14(5), 1030–1043 (2008)

    Article  Google Scholar 

  24. Yang, Y.L., Guo, R., Luo, F., Hu, S.M., Gu, X.F.: Generalized discrete Ricci flow. Comput Graph Forum 28(7), 2005–2014 (2009)

    Article  Google Scholar 

  25. Zeng, W., Lui, L.M., Shi, L., Wang, D., Chu, W.C., Cheng, J.C., Hua, J., Yau, S.T., Gu, X.F.: Shape analysis of vestibular systems in adolescent idiopathic scoliosis using geodesic spectra. Med. Image Comput. Comput. Assisted Interv. 13(3), 538–546 (2010)

    Google Scholar 

  26. Lui, L.M., Lam, K.C., Yau, S.T., Gu, X.F.: Teichmüller mapping (T-Map) and its applications to landmark matching registration. SIAM J. Imag. Sci. 7(1), 391–326 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Porter, R.M.: An interpolating polynomial method for numerical conformal mapping. SIAM J. Sci. Comput. 23(3), 1027–?1041 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hale, N., Tee, T.W.: Conformal maps to multiply-slit domains and applications. SIAM J. Sci. Comput 31(4), 3195–3215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. DeLillo, T.K., Kropf, E.H.: Numerical computation of the Schwarz-? Christoffel transformation for multiply connected domains. SIAM J. Sci. Comput. 33(3), 3195–3215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zeng, W., Lui, L.M., Gu, X.F., Yau, S.T.: Shape analysis by conformal modules. Methods Appl. Anal. 15(4), 539–556 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Lui, L.M., Gu, X., Chan, T.F., Yau, S.-T.: Variational method on Riemann surfaces using conformal parameterization and its applications to image processin. J. Methods Appl. Anal. 15(4), 513–538 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Wang, Y., Gu, X.F., Chan, T.F., Yau, S.T.: Brain surface conformal parameterization with algebraic functions. medical image computing and computer-assisted intervention. In: MICCAI 2006: 9th international conference, vol. 4191, pp. 946–954. LNCS, Copenhagen (2006)

  33. Wang, Y., Shi, J., Yin, X., Gu, X.F., Chan, T.F., Yau, S.T., Toga, A.W., Thompson, P.M.: Brain surface conformal parameterizaiton with the Ricci flow. IEEE Trans. Med. Imag. 31(2), 251–264 (2012)

    Article  Google Scholar 

  34. Mastin, C.W., Thompson, J.F.: Quasiconformal mappings and grid generation. SIAM J. Sci. Stat. Comput 5(2), 305–310 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Daripa, P.: On a numerical method for quasiconformal grid generation. J. Comput. Phys. 96, 229–236 (1991)

    Article  MATH  Google Scholar 

  36. Daripa, P.: A fast algorithm to solve nonhomogeneous Cauchy-Riemann equations in the complex plane. SIAM J. Sci. Stat. Comput. 13(6), 1418–1432 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Aigerman, N., Lipman, Y.: Injective and bounded distortion mappings in 3D. In: SIGGRAPH (2013)

  38. Lipman, Y.: Bounded distortion mapping spaces for triangular meshes. ACM SIGGRAPH 31(4), 2012 (2012)

    Article  Google Scholar 

  39. Weber, M.Z.: Computing extremal quasiconformal maps. Computer Graphics Forum (2012)

  40. Wang, Y., Gu, X.F., Chan, T.F., Thompson, P.M.: Shape analysis with conformal invariants for multiply connected domains and its application to analyzing brain morphology. In: Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Miami Beach (2009)

  41. Wong, T., Zhao, H.: Computing surface uniformizations using discrete Beltrami flow. UCLA CAM report (2013)

  42. Krichever, I., Mineev-Weinstein, M., Wiegmannd, P., Zabrodin, A.: Laplacian growth and Whitham equations of soliton theory. Physica D: Nonlinear Phenomena 198(1–2), 1–28 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Krichever, I., Marshakov, A.: A Zabrodin integrable structure of the Dirichlet boundary problem in multiply-connected domains. Commun. Math. Phys 259(1), 1–44 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Crowdy, D.: SchwarzChristoffel mappings to unbounded multiply connected polygonal regions. Math. Proc. Camb. Phil. Soc. 142, 319–339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Crowdy, D., Marshall, J.: Analytical formulae for the KirchhoffRouth path function in multiply connected domains. Proc. Royal Soc. A 461, 2477–2501 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lok Ming Lui.

Additional information

Communicated by: A. Iserles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, K.T., Lui, L.M. QCMC: quasi-conformal parameterizations for multiply-connected domains. Adv Comput Math 42, 279–312 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classifications (2010)