Skip to main content
Log in

Electromagnetic inverse shape problem for coated obstacles

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 12 July 2016

Abstract

We address the inverse problem of retrieving the shape of an obstacle with impedance in the form of a surface wave operator using the knowledge of electromagnetic scattering amplitude at a fixed frequency. We prove unique reconstructions from infinitely many measures. We then provide a characterization of the scattering amplitude derivative with respect to the obstacle shape. This derivative includes the case of shape dependent impedance parameters. We then employ a gradient-descent algorithm with H 1 boundary regularisation of the descent direction to numerically solve the inverse problem. The procedure is validated for three dimensional geometries using synthetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.: Conception optimale de structures. Springer-Verlag (2007)

  2. Allaire, G., Pantz, O.: Structural optimization with FreeFem++. Struct. Multidiscip. Optim. 32(3), 173–181 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amrouche, C., Bernardi, C., Dauge, M., Girault, V. : Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bendali, A., Lemrabet, K.: Asymptotic analysis of the scattering of a time-harmonic electromagnetic wave by a perfectly conducting metal coated with a thin dielectric shell. Asymptot. Anal. 57(3–4), 199–227 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Bourgeois, L., Chaulet, N., Haddar, H.: Stable reconstruction of generalized impedance boundary conditions. Inverse Problems 27(9), 095002, 26 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgeois, L., Chaulet, N., Haddar, H.: On simultaneous identification of the shape and generalized impedance boundary condition in obstacle scattering. SIAM J. Sci. Comput. 34(3), A1824–A1848 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgeois, L., Haddar, H.: Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging 4(1), 19–38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cakoni, F., Colton, D., Monk, P.: The linear sampling method in inverse electromagnetic scattering. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM (2011)

  9. Cakoni, F., Kress, R.: Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition. Inverse Problems 29, 015005 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chamaillard, M., Chaulet, N., Haddar, H.: Analysis of the factorization method for a general class of boundary conditions. Inverse and Ill Posed Problems (2013)

  11. Chaulet, N. Electromagnetic scattering problems with generalized impedance boundary conditions. arXiv:1312.1089

  12. Chaulet, N.: Modeles d’impedance généralisée en diffraction inversé̀. PhD thesis. École Doctorale de l’École Polytechnique (2012)

  13. Colton, D., Haddar, H., Monk, P.: The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J. Sci. Comput. 24(3), 719–731 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colton, D., Kress, R., 3rd ed: Inverse acoustic and electromagnetic scattering theory, volume 93 of Applied Mathematical Sciences. Springer, New York (2013)

  15. Dobrzynski, C.: Mmg3d : Userguide. Technical report 442. INRIA (2012)

  16. Duruflé, M., Haddar, H., Joly, P. : Higher order generalized impedance boundary conditions in electromagnetic scattering problems. C.R. Physique 7(5), 533–542 (2006)

    Article  Google Scholar 

  17. H.Haddar, Joly, P., Nguyen, H.-M.: Generelized impedance boundary conditions for scattering problems from strongly absorbong obstacles: the case of Maxwell’s equations. Math. Models Methods Appl. Sci. 18(10), 1787–1827 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haddar, H., Kress, R.: On the Fréchet derivative for obstacle scattering with an impedance boundary condition. SIAM J. Appl. Math. 65(1), 194–208 (2004). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harbrecht, H., Hohage, T.: Fast methods for three-dimensional inverse obstacle scattering problems. J. Integr. Equ. Appl. 19(3), 237–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  21. T. Hohage: Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem. J. Comput. Phys. 214(1), 224–238 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ivanyshyn, O., Kress, R., Serranho, P.: Huygens’ principle and iterative methods in inverse obstacle scattering. Adv. Comput. Math. 33(4), 413–429 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirsch, A., Kress, R.: Uniqueness in inverse obstacle scattering (acoustics). Inverse Problems 9(2), 285–299 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kress, R.: Electromagnetic waves scattering: specific theoretical tools. In: Pike, E.R., Sabatier, P.C. (eds.) Scattering, pp. 175–190. Academic press (2002)

  25. Kress, R., Päivärinta, L. : On the far field in obstacle scattering. SIAM J. Appl. Math. 59(4), 1413–1426 (1999). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kress, R., Rundell, W.: A quasi-Newton method in inverse obstacle scattering. Inverse Problems 10(5), 1145–1157 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nédélec, J.-C.: Mixed finite elements in \(\mathbb {R}^{3}\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  28. Nédélec, J.-C.: Acoustic and electromagnetic equations, volume 144 of Applied Mathematical Sciences. Springer-Verlag, New York (2001). Integral representations for harmonic problems

  29. Potthast, R.: Point sources and multipoles in inverse scattering theory, volume 427 of Chapman & Hall/CRC Research Notes in Mathematics. Chapman & Hall/CRC, Boca Raton (2001)

    Book  Google Scholar 

  30. Willatzen, M.: Electromagnetic-wave propagation along curved surfaces. Phys. Rev. A 043805, 80 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chaulet.

Additional information

Communicated by: Jan Hesthaven

The research of N. C. is supported by the Medical Research Council Grant MR/K00767X/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaulet, N., Haddar, H. Electromagnetic inverse shape problem for coated obstacles. Adv Comput Math 41, 1179–1205 (2015). https://doi.org/10.1007/s10444-015-9406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9406-3

Keywords

Mathematics Subject Classifications (2010)

Navigation