Skip to main content
Log in

Computing and analyzing recoverable supports for sparse reconstruction

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 12 July 2016

Abstract

Designing computational experiments involving 1 minimization with linear constraints in a finite-dimensional, real-valued space for receiving a sparse solution with a precise number k of nonzero entries is, in general, difficult. Several conditions were introduced which guarantee that, for example for small k or for certain matrices, simply placing entries with desired characteristics on a randomly chosen support will produce vectors which can be recovered by 1 minimization. In this work, we consider the case of large k and introduce a method which constructs vectors which support has the cardinality k and which can be recovered via 1 minimization. Especially, such vectors with largest possible support can be constructed. Further, we propose a methodology to quickly check whether a given vector is recoverable. This method can be cast as a linear program and we compare it with solving 1 minimization directly. Moreover, we gain new insights in the recoverability in a non-asymptotic regime. Our proposal for quickly checking vectors bases on optimality conditions for exact solutions of the 1 minimization. These conditions can be used to establish equivalence classes of recoverable vectors which have a support of the same cardinality. Further, by these conditions we deduce a geometrical interpretation which identifies an equivalence class with a face of an hypercube which is cut by a certain affine subspace. Due to the new geometrical interpretation we derive new results on the number of equivalence classes which are illustrated by computational experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnette, D.W.: The minimum number of vertices of a simple polytope. Israel J. Math. 10(1), 121–125 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Donoho, D.L.: Neighborly polytopes and sparse solutions of underdetermined linear equations. Statistics Departement Stanford University (2004)

  4. Donoho, D.L.: High-dimensional centrally-symmetric polytopes with neighborliness proportional to dimension. Disc. Comp. Geom. 35(4), 617–652 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tsaig, Y., Donoho, D.L.: Breakdown of local equivalence between sparse solution and 1 minimization. Signal Process. 86(3), 533–548 (2006)

    Article  MATH  Google Scholar 

  6. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of system of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dossal, C., Peyré, G., Fadili, J.: A numerical exploration of compressed sensing recovery. Linear Algebra and its Applications 482(7), 1663–1679 (2010)

  8. Foucart, S., Rauhut, H.: A mathematical introduction to compressive sensing. Birkhäuser, Boston (2013)

  9. Fuchs, J.-J.: On sparse representations in arbitrary redundant bases. IEEE Trans. Inf. Th. 50(6), 1341–1344 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grünbaum, B.: Convex polytopes, volume 221 of Graduate Texts in Mathematics, 2nd. Springer-Verlag, New York (2003)

    Google Scholar 

  11. Dohono, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47(7), 2845–2862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Strohmer, T., Heath, R.W. Jr.: Grassmannian frames with applications to coding and communnication. App. Compu. Harm. Anal. 14(3), 257–275 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kruschel, C.: Geometrical Interpretations and Algorithmic Verification of Exact Solutions in Compressed Sensing. PhD thesis, TU Braunschweig (2014)

    Google Scholar 

  14. Lawrence, J.: Cutting the d-cube. J. Res. Natl. Bur. Stand., 84 (1979)

  15. Lonke, Y.: On Random Sections of the Cube. Discret. Comput. Geom. 23, 157–169 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lorenz, D.A.: Constructing test instances for Basis Pursuit Denoising. IEEE Trans. Signal Process. 61(5) (2013)

  17. Barany, I., Lovasz, L.: Borsuks Theorem and the number of facets of centrally symmetric polytopes. Acta Math. Sci. Hungar. 40, 323–389 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Istomina, M.N., Pevnyi, A.B.: The Mercedes–Benz frame in the n-dimensional space [in Russian]. Vestnik Syktyvkar. Gos. Univ. Ser. 1, 219–222 (2006)

    Google Scholar 

  19. Malozemov, V.N., Borisovich, P.A.: Equiangular tight frames. J. Math. Sci. 157, 789–815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17, 179–184 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inform. Theory 49(12), 3320–3325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. O’Neil, P.E.: Hyperplane cuts of an n-cube. Discret. Math. 1(2), 193–195 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Plumbley, M.D.: On polar polytopes and the recovery of sparse representations. IEEE Trans. Inf. Theory 53(9), 3188–3195 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Poincaré, H: Sur la genéralisation d’un théorème d’Euler relatif aux polyèdreś. C. R. Acad. Sci. Paris 177, 144–145 (1893)

    MATH  Google Scholar 

  25. Poincaré, H.: Complement à l’Analysis Situś. Rend. Circ. Mat. Palermo. 13, 285–343 (1899)

    Article  MATH  Google Scholar 

  26. Chen, S.S., Donoho, D.L., Saunders, A.: Atomic Decomposition by Basis Pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Affentranger, F., Schneider, R.: Random projections of regular simplices. Discret. Comput. Geom. 7, 219–226 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shepard, P.M., Geoffrey, C.: Diagrams for centrally symmetric d-polytopes. Mathematika 15, 123–138 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  29. Steinitz, E.: Über die Eulersche Polyederrelationen. Arch. Math. Phys. 11, 86–88 (1906)

    Google Scholar 

  30. Donoho, D.L., Tanner, J.: Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. Royal Soc. A: Math., Phys. Eng. Sci. 367(1906), 4273–4293 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tropp, J.A.: Recovery of short, complex, linear combinations va 1-minimization. IEEE Trans. Inform. Theory 51, 1568–1570 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ziegler, G.M.: Lectures on polytopes, (152). Graduate Texts in Mathematics. Springer-Verlag, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk A. Lorenz.

Additional information

Communicated by: Raymond H. Chan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruschel, C., Lorenz, D.A. Computing and analyzing recoverable supports for sparse reconstruction. Adv Comput Math 41, 1119–1144 (2015). https://doi.org/10.1007/s10444-015-9403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9403-6

Keywords

Mathematics Subject Classification (2010)

Navigation