Skip to main content
Log in

Numerical reconstruction of convex polytopes from directional moments

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 12 July 2016

Abstract

We reconstruct an n-dimensional convex polytope from the knowledge of its directional moments. The directional moments are related to the projection of the polytope vertices on a particular direction. To extract the vertex coordinates from the moment information we combine established numerical algorithms such as generalized eigenvalue computation and linear interval interpolation. Numerical illustrations are given for the reconstruction of 2-d and 3-d convex polytopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldoni, V., Berline, N., De Loera, J.A., Köppe, M., Vergne, M.: How to integrate a polynomial over a simplex. Math. Comp. 80(273), 297–325 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, M., Robins, S.: Computing the continuous discretely. Undergraduate Texts in Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  3. Beckermann, B.: The condition number of real Vandermonde, Krylov and positive definite Hankel matrices. Numer. Math. 85, 553–577 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beckermann, B., Golub, G.H., Labahn, G.: On the numerical condition of a generalized Hankel eigenvalue problem. Numer. Math. 106(1), 41–68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabay, S., Meleshko, R.: A weakly stable algorithm for Padé approximants and the inversion of Hankel matrices. SIAM J. Matrix Anal. Appl. 14(3), 735–765 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cuyt, A., Golub, G., Milanfar, P., Verdonk, B.: Multidimensional integral inversion, with applications in shape reconstruction. SIAM J. Sci. Comput. 27(3), 1058–1070 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis, P.J.: Triangle formulas in the complex plane. Math. Comp. 18, 569–577 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Demmel, J.W.: Applied numerical linear algebra. Society for Industrial and Applied Mathematics. SIAM, PA (1997)

    Book  Google Scholar 

  9. Elad, M., Milanfar, P., Golub, G.H.: Shape from moments—an estimation theory perspective. IEEE Trans. Signal Process. 52(7), 1814–1829 (2004)

    Article  MathSciNet  Google Scholar 

  10. Feldmann, S., Heinig, G.: Vandermonde factorization and canonical representations of block Hankel matrices. Linear Algebra Appl. 241–243(0), 247–278 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gautschi, W.: Optimally conditioned Vandermonde matrices. Numer. Math. 24, 1–12 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giesbrecht, M., Labahn, G., Lee, W.-S.: Symbolic-numeric sparse interpolation of multivariate polynomials. J. Symbolic Comput. 44(8), 943–959 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Golub, G.H., Pereyra, V.: Separable nonlinear least squares: the variable projection method and its applications. Inverse Probl. 19(2), R1—R26 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golub, G.H., Van Loan, C.F.: Matrix computations, volume 3 of Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD (1983)

    Google Scholar 

  15. Golub, G.H., Milanfar, P., Varah, J.: A stable numerical method for inverting shape from moments. SIAM J. Sci. Comput. 21(4), 1222–1243 (1999/00)

  16. Gravin, N., Lasserre, J., Pasechnik, D.V., Robins, S.: The inverse moment problem for convex polytopes. Discrete Comput. Geom. 48(3), 596–621 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gravin, N., Nguyen, D., Pasechnik, D., Robins, S.: The inverse moment problem for convex polytopes: implementation aspects (2014). ArXiv e-prints, 1409.3130

  18. Gustafsson, B., He, C., Milanfar, P., Putinar, M.: Reconstructing planar domains from their moments. Inverse Probl. 16(4), 1053–1070 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Henrici, P.: Applied and computational complex analysis. Vol. 1. Wiley Classics Library. John Wiley & Sons Inc., New York, 1988. Power series—integration—conformal mapping—location of zeros, Reprint of the 1974 original, A Wiley-Interscience Publication

  20. Higham, D.J., Higham, N.J.: Structured backward error and condition of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 20(2), 493–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hua, Y., Sarkar, T.K.: Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoust., Speech, Signal Process. 38(5), 814–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaltofen, E., Lee, W.-S.: Early termination in sparse interpolation algorithms. J. Symbolic Comput. 36(3-4), 365–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaltofen, E.L., Lee, W.-S., Yang, Z.: Fast estimates of Hankel matrix condition numbers and numeric sparse interpolation. In SNC’11, pp 130–136. ACM Press, NY (2011)

    Google Scholar 

  24. Lee, W.-S.: From quotient-difference to generalized eigenvalues and sparse polynomial interpolation. In SNC’07, pp 110–116. ACM, New York (2007)

  25. Milanfar, P., Verghese, G., Karl, C., Willsky, A.: Reconstructing polygons from moments with connections to array processing. IEEE Trans. Signal Process. 43, 432–443 (1995)

    Article  Google Scholar 

  26. Pereyra, V., Scherer, G. (eds.): Exponential Data Fitting and its Applications. Bentham e-books., http://www.benthamscience.com/ebooks/9781608050482 (2010)

  27. Riche de Prony, C.B.: Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastique et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes températures. J. de l’École Polytechnique 1, 24–76 (1795)

  28. Salazar Celis, O., Cuyt, A., Verdonk, B.: Rational approximation of vertical segments. Numer. Algorithm. 45, 375–388 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sheynin, S., Tuzikov, A.: Explicit formulae for polyhedra moments. Pattern Recogn. Lett. 22, 1103–1109 (2001)

    Article  MATH  Google Scholar 

  30. Wilkinson, J.H.: Kronecker’s canonical form and the QZ algorithm. Linear Algebra Appl. 28, 285–303 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Collowald.

Additional information

Communicated by: Leslie Greengard

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collowald, M., Cuyt, A., Hubert, E. et al. Numerical reconstruction of convex polytopes from directional moments. Adv Comput Math 41, 1079–1099 (2015). https://doi.org/10.1007/s10444-014-9401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9401-0

Keywords

Mathematics Subject Classification (2010)

Navigation