Skip to main content
Log in

Variants of an explicit kernel-split panel-based Nyström discretization scheme for Helmholtz boundary value problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The incorporation of analytical kernel information is exploited in the construction of Nyström discretization schemes for integral equations modeling planar Helmholtz boundary value problems. Splittings of kernels and matrices, coarse and fine grids, high-order polynomial interpolation, product integration performed on the fly, and iterative solution are some of the numerical techniques used to seek rapid and stable convergence of computed fields in the entire computational domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, K.E.: The numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  2. Barnett, A.H.: Evaluation of layer potentials close to the boundary for Laplace and Helmholtz problems on analytic planar domains. SIAM J. Sci. Comput. 36, A427–A451 (2014)

    Article  Google Scholar 

  3. Betcke, T., Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Lindner, M.: Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation. Numer. Meth. Part. D. E. 27, 31–69 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bremer, J., Gillman, A., Martinsson, P.G.: A high-order accurate accelerated direct solver for acoustic scattering from surfaces. arXiv:1308.6643v1 [math.NA] (2013)

  5. Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  6. Hao, S., Barnett, A.H., Martinsson, P.G., Young, P.: High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane. Adv. Comput. Math. 40, 245–272 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Helsing, J., Ojala, R.: On the evaluation of layer potentials close to their sources. J. Comput. Phys. 227, 2899–2921 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Helsing, J.: Integral equation methods for elliptic problems with boundary conditions of mixed type. J. Comput. Phys. 228, 8892–8907 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Helsing, J.: Solving integral equations on piecewise smooth boundaries using the RCIP method: a tutorial. Abstr. Appl. Anal. 2013 (2013). article ID 938167

  10. Helsing, J., Karlsson, A.: An accurate boundary value problem solver applied to scattering from cylinders with corners. IEEE Trans. Antennas Propag. 61, 3693–3700 (2013)

    Article  MathSciNet  Google Scholar 

  11. Helsing, J., Karlsson, A.: An explicit kernel-split panel-based Nyström scheme for integral equations on axially symmetric surfaces. J. Comput. Phys. 272, 686–703 (2014)

    Article  MathSciNet  Google Scholar 

  12. Ho, K.L., Greengard, L.: A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34, A2507–A2532 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Klöckner, A., Barnett, A., Greengard, L., O’Neil, M.: Quadrature by expansion: A new method for the evaluation of layer potentials. J. Comput. Phys. 252, 332–349 (2013)

    Article  MathSciNet  Google Scholar 

  14. Kolm, P., Rokhlin, V.: Numerical quadratures for singular and hypersingular integrals. Comput. Math. Appl. 41, 327–352 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kress, R.: Boundary integral equations in time-harmonic acoustic scattering. Mathl Comput. Modelling 15, 229–243 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kress, R.: Linear Integral equations, 2nd ed. Springer, New York (1999)

    Book  MATH  Google Scholar 

  17. Mitrea, M.: Boundary value problems and Hardy spaces associated to the Helmholtz equation in Lipschitz domains. J. Math. Anal. Appl. 202, 819–842 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Helsing.

Additional information

Communicated by: Zydrunas Gimbutas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helsing, J., Holst, A. Variants of an explicit kernel-split panel-based Nyström discretization scheme for Helmholtz boundary value problems. Adv Comput Math 41, 691–708 (2015). https://doi.org/10.1007/s10444-014-9383-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9383-y

Keywords

Mathematics Subject Classification (2010)

Navigation