Skip to main content

Multilevel approximation of the gradient operator on an adaptive spherical geodesic grid

Abstract

This work presents a new adaptive multilevel approximation of the gradient operator on a recursively refined spherical geodesic grid. The multilevel structure provides a simple way to adapt the computation to the local structure of the gradient operator so that high resolution computations are performed only in regions where singularities or sharp transitions occur. This multilevel approximation of the gradient operator is used to solve the linear spherical advection equation for both time-independent and time-dependent wind field geophysical test cases. In contrast with other approximation schemes, this approach can be extended easily to other curved manifolds by choosing an appropriate coarse approximation and using recursive surface subdivision. The results indicate that the adaptive gradient calculation and the solution of spherical advection equation accurate, efficient and free of numerical dispersion.

This is a preview of subscription content, access via your institution.

References

  1. Sbalzarini, I.F., Hayer, A., Helenius, A., Koumoutsakos, P.: Simulations of anistropic diffusion on curved biological surfaces. Biophys. J. 90, 878–885 (2006)

    Article  Google Scholar 

  2. Novak, I.G., Gao, F., Choi, Y.S., Resasco, D., Schaff, J.C., Slepchenko, B.M.: Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology. J. Comput. Phys. 226, 1271–1290 (2007)

    MATH  MathSciNet  Article  Google Scholar 

  3. Nair, R.D., Jablonowski, C.: Moving vortices on the sphere: A test case for horizontal advection problems. Mon. Wea. Rev. 136(2), 699–711 (2007)

    Article  Google Scholar 

  4. Nair, R.D., Lauritzen, P.H.: A class of deformational flow test cases for linear transport problems on the sphere. J. Comput. Phys. 229(23), 8868–8887 (2010)

    MATH  MathSciNet  Article  Google Scholar 

  5. Farid, H., Simoncelli, E.P.: Differentiation of discrete multidimensional signals. IEEE Trans. Image Process. 13(4), 496–508 (2004)

    MathSciNet  Article  Google Scholar 

  6. Shima, T., Saito, S., Nakajima, M.: Design and evaluation of more accurate gradient operators on hexagonal lattices. IEEE Trans. Pattern. Anal. Mach. Intell. 32(6), 961–973 (2010)

    Article  Google Scholar 

  7. Gan, R., Chung, A.C.S., Liao, S.: Maximum distance - gradient for robust image registration. Med. Image Anal. 12, 452–468 (2008)

    Article  Google Scholar 

  8. Ben-yu, G.: A spectral method for the voriticity equation on the surface. Math. Comp. 64, 1067–1079 (1995)

    MathSciNet  Article  Google Scholar 

  9. Daubechies, I.: Ten lectures on Wavelets. SIAM (1992)

  10. Meyer, Y.: Analysis at Urbana I: Analysis in Function Spaces. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  11. Sweldens, W.: The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal. 2(29), 511–546 (1998)

    MathSciNet  Article  Google Scholar 

  12. Vasilyev, O.V., Bowman, C.: Second generation wavelet collocation method for the solution of partial differential equations. J. Comput. Phys. 165, 660–693 (2000)

    MATH  MathSciNet  Article  Google Scholar 

  13. Vasilyev, O.V., Paolucci, S.: A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain. J. Comput. Phys. 125(111), 498–512 (1996)

    MATH  MathSciNet  Article  Google Scholar 

  14. Roussel, O.V., Schneider, K., Tsigulin, A., Bockhorn, H.: A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput Phys. 188(2), 493–523 (2003)

    MATH  MathSciNet  Article  Google Scholar 

  15. Roussel, O.V., Schneider, K.: Coherent vortex simulation of weakly compressible turbulent mixing layers using adaptive multiresolution methods. J. Comput. Phys. 229, 2267–2286 (2010)

    MATH  MathSciNet  Article  Google Scholar 

  16. Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: An adaptive multiresolution scheme with local time stepping for evolutionary PDEs. J. Comput. Phys. 227, 3758–3780 (2008)

    MATH  MathSciNet  Article  Google Scholar 

  17. Schneider, K., Vasilyev, O.V.: Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 42, 473–503 (2010)

    MathSciNet  Article  Google Scholar 

  18. Mehra, M., Kevlahan, N.K.R.: An adaptive wavelet collocation method for the solution of partial differential equation on the sphere. J. Comput. Phys 227, 5610–5632 (2008)

    MATH  MathSciNet  Article  Google Scholar 

  19. Mehra, M., Kevlahan, N.K.R.: An adaptive multilevel wavelet solver for elliptic equations on an optimal spherical geodesic grid. SIAM J. Sci. Comput. 30(6), 3073–3086 (2008)

    MATH  MathSciNet  Article  Google Scholar 

  20. Behera, R., Mehra, M.: Integration of barotrophic vorticity equation over spherical geodesic grid using multilevel adaptive wavelet collocation method. Appl. Math. Modelling 37, 5215–5226 (2013)

    MathSciNet  Article  Google Scholar 

  21. Heikes, R., Randall, D.A.: Numerical integration of the shallow-water equations on a twisted icosahedral grid. part: Basic design and results of test. Mon. Wea. Rev. 123, 1862–1880 (1995)

    Article  Google Scholar 

  22. Williamson, D.L.: Integration of the barotrophic vorticity equation on a spherical geodesic grid. Tellus 4, 642–653 (1968)

    Article  Google Scholar 

  23. Sadourny, R., Akakawa, A., Mintz, Y.: Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Mon. Wea. Rev. 96, 351–356 (1968)

    Article  Google Scholar 

  24. Masuda, Y., Ohnishi, H.: Short and medium Renge Numerical Weather Predication: Meteorological Society of Japan. In: Matsuno, T. (ed.) An integration scheme of the primitive equation model with a icosahedral-hexagonal grid system and its application to the shallow water equations, pp. 317–326 (1986)

  25. Pudykiewicz, J.A.: Numerical solution of the reaction-advection-diffusion equation on the sphere. J. Comput. Phys. 213, 358–390 (2006)

    MATH  MathSciNet  Article  Google Scholar 

  26. Schroder, P., Sweldens, W.: In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques Spherical wavelets: Efficiently representing functions on the sphere, pp. 161–172 (1995)

  27. Tomita, H., Tsugawa, M., Satoh, M., Goto, K.: Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. J. Comput Phys. 174, 579–613 (2001)

    MATH  Article  Google Scholar 

  28. Meyer, M., Desbrun, M., Schroder, P., Barr, A.: Visualization and Mathematics III Discrete differential geometry operator for triangulated 2-manifolds, pp. 35–57 (2002)

  29. Donoho, D.L.: Interpolating wavelet transforms. Technical Report 408, Department of Statistics, Stanford University (1992)

  30. Vasilyev, O.V.: Solving multi-dimensional evolution problems with localized structure using second generation wavelets. Int. J. Comp. Fluid Dyn. 17(2), 151–168 (2003)

    MATH  MathSciNet  Article  Google Scholar 

  31. Dyn, N., Levin, D., Gregory, J.: A butterfly subdivision scheme for surface interpolation with tension control. Trans. Graph. 9(2), 160–169 (1990)

    MATH  Article  Google Scholar 

  32. Gassmann, A.: Inspection of hexagonal and triangular c-grid discretizations of the shallow water equations. J. Comput. Phys. 230(7), 2706–2721 (2011)

    MATH  MathSciNet  Article  Google Scholar 

  33. Williamson, D.L., Drake, J.B., Hack, J.J., Jacob, R., Swarztrauber, P.N.: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102, 211–224 (1992)

    MATH  MathSciNet  Article  Google Scholar 

  34. Lauritzen, P.H., Skamarock, W.B., Prather, M.J., Taylor, M.A.: A standard test case suite for two-dimensional linear transport on the sphere. Geosci. Model Dev. 5, 887–901 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Mehra.

Additional information

Communicated by: Robert Schaback

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behera, R., Mehra, M. & Kevlahan, N.KR. Multilevel approximation of the gradient operator on an adaptive spherical geodesic grid. Adv Comput Math 41, 663–689 (2015). https://doi.org/10.1007/s10444-014-9382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9382-z

Keywords

  • Second generation wavelet
  • Gradient operator on the sphere
  • Spherical geodesic grid
  • Advection equation
  • Adaptive wavelet collocation method

Mathematics Subject Classifications (2010)

  • 65T60
  • 65DXX