Abstract
Recovery of image data from photoacoustic measurements asks for the inversion of the spherical mean value operator. In contrast to direct inversion methods for specific geometries, we consider a semismooth Newton scheme to solve a total variation regularized least squares problem. During the iteration, each matrix vector multiplication is realized in an efficient way using a recently proposed spectral discretization of the spherical mean value operator. All theoretical results are illustrated by numerical experiments.
This is a preview of subscription content, access via your institution.
References
Agranovsky, M., Kuchment, P.: Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Problems 23(5), 2089–2102 (2007)
Agranovsky, M., Kuchment, P., Kunyansky, L.: On reconstruction formulas and algorithms for the thermoacoustic tomography. In: Wang, L. V. (ed.) Photoacoustic imaging and spectroscopy, chapter 8, pp. 89–101. CRC Press, Boca Raton (2009)
Agranovsky, M., Kuchment, P., Quinto, E. T.: Range descriptions for the spherical mean Radon transform. J. Funct. Anal. 248(2), 344–386 (2007)
Ansorg, M., Filbir, F., Madych, W. R., Seyfried, R.: Summability kernels for circular and spherical mean data. Inverse Problems 29(1), 015002 (2013)
Bovik, A.: Handbook of image and video processing. Academic (2000)
Buehler, A., Rosenthal, A., Jetzfellner, T., Dima, A., Razansky, D., Ntziachristos, V.: Model-based optoacoustic inversions with incomplete projection data. Med. Phys. 38, 2011 (1694)
Burgholzer, P., Matt, G. J., Haltmeier, M., Paltauf, G.: Exact and approximate imaging methods for photoacoustic tomography using an arbitrary detection surface. Phys. Rev. E 75(4), 046706 (2007)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging (2011)
Courant, R., Hilbert, D.: Methods of mathematical physics. Vol. II: Partial differential equations. (Vol. II by R. Courant.)Interscience Publishers (a division of John Wiley & Sons), New York (1962)
Filbir, F., Hielscher, R., Madych, W. R.: Reconstruction from circular and spherical mean data. Appl. Comput. Harmon. Anal. 29(1), 111–120 (2010)
Finch, D., Haltmeier, M., Rakesh: Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68(2), 392–412 (2007)
Görner, T., Hielscher, R., Kunis, S.: Efficient and accurate computation of spherical mean values at scattered center points. Inverse Probl. Imaging 6(4), 645–661 (2012)
Haltmeier, M.: A mollification approach for inverting the spherical mean Radon transform. SIAM J. Appl. Math. 71(5), 1637–1652 (2011)
Haltmeier, M.: Inversion of circular means and the wave equation on convex planar domains. Comput. Math. Appl. 65(7) (2013)
Haltmeier, M.: Universal inversion formulas for recovering a function from spherical means. SIAM J. Math. Anal. 46(1), 214–232 (2014)
Haltmeier, M., Scherzer, O., Burgholzer, P., Paltauf, G.: Thermoacoustic computed tomography with large planar receivers. Inverse Problems 20(5), 1663–1673 (2004)
Haltmeier, M., Scherzer, O., Zangerl, G.: A reconstruction algorithm for photoacoustic imaging based on the nonuniform FFT. IEEE Trans. Med. Imag. 28(11), 1727–1735 (2009)
Haltmeier, M., Schuster, T., Scherzer, O.: Filtered backprojection for thermoacoustic computed tomography in spherical geometry. Math. Methods Appl. Sci. 28(16), 1919–1937 (2005)
Haltmeier, M., Zangerl, G.: Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth. Inverse Problems 26(12), 125002, 14 (2010)
Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2003). 2002
Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006)
Hristova, Y., Kuchment, P., Nguyen, L.: Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Problems 24(5), 055006, 25 (2008)
Huber, P. J.: Robust regression: asymptotics, conjectures and Monte Carlo. Ann. Statist. 1, 799–821 (1973)
Keiner, J., Kunis, S., Potts, D.: Using NFFT 3—a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software 36(4), Art. 19, 30 (2009)
Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic tomography. European J. Appl. Math. 19(2), 191–224 (2008)
Kunis, S., Melzer, I.: A stable and accurate butterfly sparse Fourier transform. SIAM J. Numer. Anal. 50(3), 1777–1800 (2012)
Kunyansky, L.: Reconstruction of a function from its spherical (circular) means with the centers lying on the surface of certain polygons and polyhedra. Inverse Problems 27(2), 025012, 22 (2011)
Kunyansky, L. A.: Explicit inversion formulae for the spherical mean Radon transform. Inverse Problems 23(1), 373–383 (2007)
Kunyansky, L. A.: A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inverse Problems 23(6), S11–S20 (2007)
Natterer, F.: Photo-acoustic inversion in convex domains. Inverse Probl. Imaging 6(2), 1–6 (2012)
Nesterov, Y.: Smooth minimization of non-smooth functions (2005)
Palamodov, V.: Remarks on the general funk transform and thermoacoustic tomography. Inverse Probl. Imaging 4, 693–702 (2010)
Paltauf, G., Nuster, R., Haltmeier, M., Burgholzer, P.: Photoacoustic Tomography with Integrating Area and Line Detectors. In: Wang, L. V. (ed.) Photoacoustic Imaging and Spectroscopy, Optical Science and Engineering, chapter 20, pp. 251–263. CRC Press, Boca Raton (2009)
Qi, L. Q., Sun, J.: A nonsmooth version of Newton’s method. Math. Programming 58(3, Ser. A), 353–367 (1993)
Qian, J., Stefanov, P., Uhlmann, G., Zhao, H.: An efficient Neumann series-based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed. SIAM J. Imaging Sci. 4(3), 850–883 (2011)
Quinto, E. T.: Helgason’s support theorem and spherical Radon transforms. In: Radon transforms, geometry, and wavelets, volume 464 of Contemp. Math., pp. 249–264. Amer. Math. Soc., Providence (2008)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Saad, Y., 2nd ed.: Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia (2003)
Stefanov, P., Uhlmann, G.: Thermoacoustic tomography with variable sound speed. Inverse Problems 25(7), 075011, 16 (2009)
Wang, L. V., Wu, H.: Biomedical Optics - Principles and Imaging. John Wiley & Sons Inc., Hoboken (2007)
Ying, L.: Sparse Fourier transform via butterfly algorithm. SIAM J. Sci. Comput. 31(3), 1678–1694 (2009)
Zangerl, G., Scherzer, O.: Exact reconstruction in photoacoustic tomography with circular integrating detectors II: spherical geometry. Math. Methods Appl. Sci. 33(15), 1771–1782 (2010)
Zangerl, G., Scherzer, O., Haltmeier, M.: Exact series reconstruction in photoacoustic tomography with circular integrating detectors. Commun. Math. Sci. 7(3), 665–678 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Leslie Greengard
Rights and permissions
About this article
Cite this article
Dong, Y., Görner, T. & Kunis, S. An algorithm for total variation regularized photoacoustic imaging. Adv Comput Math 41, 423–438 (2015). https://doi.org/10.1007/s10444-014-9364-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-014-9364-1
Keywords
- Spherical mean operator
- Fast Fourier transform
- Total variation regularization
- Photoacoustic imaging
Mathematics Subject Classifications (2010)
- 65T50
- 44A12
- 92C55