Skip to main content

Solving the heat equation on the unit sphere via Laplace transforms and radial basis functions


We propose a method to construct numerical solutions of parabolic equations on the unit sphere. The time discretization uses Laplace transforms and quadrature. The spatial approximation of the solution employs radial basis functions restricted to the sphere. The method allows us to construct high accuracy numerical solutions in parallel. We establish L 2 error estimates for smooth and nonsmooth initial data, and describe some numerical experiments.

This is a preview of subscription content, access via your institution.


  1. Bailey, W.E.: An Elementary Treatise on Fourier’s Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. Dover, New York (1959)

    Google Scholar 

  2. Butcher, J.C.: Numerical Methods for Differential Equations. Wiley, New York (2010)

    Google Scholar 

  3. Chen, D., Menegatto, V.A., Sun, X.: A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131, 2733–2740 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Le Gia, Q.T., McLean, W.: Numerical solution of a parabolic equation on the sphere using Laplace transforms and radial basis functions. In: McLean, W., Roberts, A.J. (eds.) Proceedings of the 15th Biennial Computational Techniques and Applications Conference, CTAC-2010, vol. 52 of ANZIAM J., pp. C89—C102 (2011)

  5. Le Gia, Q.T.: Approximation of parabolic PDEs on spheres using spherical basis functions. Adv. Comput. Math. 22, 377–397 (2005)

    Article  MathSciNet  Google Scholar 

  6. McLean, W., Thomée, V.: Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integr. Equ. Appl. 22, 57–94 (2010)

    Article  MATH  Google Scholar 

  7. Müller, C.: Spherical Harmonics, volume 17 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1966)

    Google Scholar 

  8. National Institute of Standards and Technology: Digital Library of Mathematical Functions. Release date 2011-07-01,

  9. Suleiman,M., Jaafar, A., Jawias, N.I.C., Ismail, F.: Fourth order four-stage diagonally implicit Runge-Kutta method for linear ordinary differential equations. Malays. J. Math. Sci. 4, 95–105 (2010)

    Google Scholar 

  10. Nitsche, J.A., Schatz, A.H.: Interior estimates for Ritz–Galerkin methods. Math. Comput. 28, 937–958 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19, 5–11 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Schoenberg, I.J.: Positive definite function on spheres. Duke Math. J. 9, 96–108 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time-discretization of parabolic equations based on contour integral representation and quadrature. Math. Comput. 69, 177–195 (1999)

    Article  Google Scholar 

  14. Szegö, G.: Orthogonal Polynomials. American Mathematical Society, New York (1959)

    MATH  Google Scholar 

  15. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  16. Tran, T., Le Gia, Q.T., Sloan, I.H., Stephan, E.P.: Boundary integral equations on the sphere with radial basis functions: error analysis. Appl. Numer. Math. 59, 2857–2871 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tran, T., Pham, T.D.: Pseudodifferential Equations on the Sphere with Spherical Radial Basis Functions: Error Analysis. Applied Mathematics Report 2008/11, The University of New South Wales (2008)

  18. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  19. Xu, Y., Cheney, E.W.: Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116, 977–981 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Quoc Thong Le Gia.

Additional information

Communicated by: J. Ward.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Le Gia, Q.T., McLean, W. Solving the heat equation on the unit sphere via Laplace transforms and radial basis functions. Adv Comput Math 40, 353–375 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classifications (2010)