, Volume 39, Issue 3–4, pp 585–609

# Constructing all self-adjoint matrices with prescribed spectrum and diagonal

• Matthew Fickus
• Dustin G. Mixon
• Miriam J. Poteet
• Nate Strawn
Article

## Abstract

The Schur–Horn Theorem states that there exists a self-adjoint matrix with a given spectrum and diagonal if and only if the spectrum majorizes the diagonal. Though the original proof of this result was nonconstructive, several constructive proofs have subsequently been found. Most of these constructive proofs rely on Givens rotations, and none have been shown to be able to produce every example of such a matrix. We introduce a new construction method that is able to do so. This method is based on recent advances in finite frame theory which show how to construct frames whose frame operator has a given prescribed spectrum and whose vectors have given prescribed lengths. This frame construction requires one to find a sequence of eigensteps, that is, a sequence of interlacing spectra that satisfy certain trace considerations. In this paper, we show how to explicitly construct every such sequence of eigensteps. Here, the key idea is to visualize eigenstep construction as iteratively building a staircase. This visualization leads to an algorithm, dubbed Top Kill, which produces a valid sequence of eigensteps whenever it is possible to do so. We then build on Top Kill to explicitly parametrize the set of all valid eigensteps. This yields an explicit method for constructing all self-adjoint matrices with a given spectrum and diagonal, and moreover all frames whose frame operator has a given spectrum and whose elements have given lengths.

## Keywords

Schur–Horn Interlacing Majorization Frames

42C15

## References

1. 1.
Antezana, J., Massey, P., Ruiz, M., Stojanoff, D.: The Schur–Horn theorem for operators and frames with prescribed norms and frame operator. Illinois J. Math. 51, 537–560 (2007)
2. 2.
Batson, J., Spielman, D.A., Srivastava, N.: Twice-Ramanujan sparsifiers. In: STOC 09: Proc. 41st Annu. ACM Symp. Theory Comput., pp. 255–262 (2009)Google Scholar
3. 3.
Bendel, R.B., Mickey, M.R.: Population correlation matrices for sampling experiments. Commun. Stat. Simul. Comput. 7, 163–182 (1978)
4. 4.
Bodmann, B.G., Casazza, P.G.: The road to equal-norm Parseval frames. J. Funct. Anal. 258, 397–420 (2010)
5. 5.
Cahill, J., Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.: Constructing finite frames of a given spectrum and set of lengths. Appl. Comput. Harmon. Anal. (to appear). arXiv:1106.0921
6. 6.
Casazza, P.G., Fickus, M., Mixon, D.G.: Auto-tuning unit norm tight frames. Appl. Comput. Harmon. Anal. 32, 1‒15 (2012)
7. 7.
Casazza, P.G., Fickus, M., Mixon, D.G., Wang, Y., Zhou, Z.: Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30, 175–187 (2011)
8. 8.
Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18, 387–430 (2003)
9. 9.
Casazza, P.G., Leon, M.: Existence and construction of finite tight frames. J. Comput. Appl. Math. 4, 277–289 (2006)
10. 10.
Chan, N.N., Li, K.-H.: Diagonal elements and eigenvalues of a real symmetric matrix. J. Math. Anal. Appl. 91, 562–566 (1983)
11. 11.
Chu, M.T.: Constructing a Hermitian matrix from its diagonal entries and eigenvalues. SIAM J. Matrix Anal. Appl. 16, 207–217 (1995)
12. 12.
Davies, P.I., Higham, N.J.: Numerically stable generation of correlation matrices and their factors. BIT 40, 640–651 (2000)
13. 13.
Dhillon, I.S., Heath, R.W., Sustik, M.A., Tropp, J.A.: Generalized finite algorithms for constructing Hermitian matrices with prescribed diagonal and spectrum. SIAM J. Matrix Anal. Appl. 27, 61–71 (2005)
14. 14.
Dykema, K., Strawn, N.: Manifold structure of spaces of spherical tight frames. Int. J. Pure Appl. Math. 28, 217–256 (2006)
15. 15.
Fickus, M., Mixon, D.G., Poteet, M.J.: In: Proc. SPIE 8138, 81380Q/1–8 (2011)Google Scholar
16. 16.
Goyal, V.K., Vetterli, M., Thao, N.T.: Quantized overcomplete expansions in $${\mathbb R}^N$$: analysis, synthesis, and algorithms. IEEE Trans. Inform. Theory 44, 16–31 (1998)
17. 17.
Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10, 203–233 (2001)
18. 18.
Higham, N.J.: Matrix nearness problems and applications. In: Gover, M.J.C., Barnett, S. (eds.) Applications of Matrix Theory, pp. 1–27. Oxford University Press (1989)Google Scholar
19. 19.
Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)
20. 20.
Horn, A.: Doubly stochastic matrices and the diagonal of a rotation matrix. Amer. J. Math. 76, 620–630 (1954)
21. 21.
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)
22. 22.
Leite, R.S., Richa, T.R.W., Tomei, C.: Geometric proofs of some theorems of Schur–Horn type. Linear Algebra Appl. 286, 149–173 (1999)
23. 23.
Massey, P., Ruiz, M.: Tight frame completions with prescribed norms. Sampl. Theory Signal Image Process. 7, 1–13 (2008)
24. 24.
Schur, I.: Über eine klasse von mittelbildungen mit anwendungen auf die determinantentheorie. Sitzungsber. Berl. Math. Ges. 22, 9–20 (1923)Google Scholar
25. 25.
Strawn, N.: Finite frame varieties: nonsingular points, tangent spaces, and explicit local parameterizations. J. Fourier Anal. Appl. 17, 821–853 (2011)
26. 26.
Tropp, J.A., Dhillon, I.S., Heath, R.W.: Finite-step algorithms for constructing optimal CDMA signature sequences. IEEE Trans. Inform. Theory 50, 2916–2921 (2004)
27. 27.
Viswanath, P., Anantharam, V.: Optimal sequences and sum capacity of synchronous CDMA systems. IEEE Trans. Inform. Theory 45, 1984–1991 (1999)

## Authors and Affiliations

• Matthew Fickus
• 1
Email author
• Dustin G. Mixon
• 1
• Miriam J. Poteet
• 1
• Nate Strawn
• 2
1. 1.Department of Mathematics and StatisticsAir Force Institute of TechnologyWright-Patterson Air Force BaseUSA
2. 2.Department of MathematicsDuke UniversityDurhamUSA