Recovering the Dirichlet-to-Neumann map in inverse scattering problems using integral equation methods

Abstract

Consider the reconstruction of Dirichlet-to-Neumann map(D-to-N map) from the far-field patterns of the scattered waves in inverse scattering problems, which is the first step in detecting the obstacle boundary by the probe method using far-field measurements corresponding to all incident plane waves. In principle, this problem can be reduced to solving an integral equation of the second kind with the kernels involving the derivatives of the scattered waves for point sources. Based on the mixed reciprocity principle, we propose two simple and feasible numerical schemes for reconstructing D-to-N map. Compared with the well-known obstacle boundary recovering schemes using the simulation of D-to-N map directly, the proposed schemes give the possible ways to realizing the probe methods using practical far-field data, with the advantage of no numerical differentiation for scattered wave in their implementations. We present some numerical examples for the D-to-N map, showing the validity and stability of our schemes.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Cheng, J., Liu, J.J., Nakamura, G.: Recovery of the shape of an obstacle and the boundary impedance from the far-field pattern. J. Math. Kyoto Univ. 43, 165–186 (2003)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Cheng, J., Liu, J.J., Nakamura, G.: The numerical realization of probe method for the inverse scattering problems from the near-field data. Inverse Probl. 21, 839–856 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Cheng, J., Liu, J.J., Nakamura, G., Wang, S.Z.: Recovery of multiple obstacles by the probe method. Q. Appl. Math. 67, 221–247 (2009)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)

    Google Scholar 

  5. 5.

    Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory. Springer, Berlin (1998)

    Google Scholar 

  6. 6.

    Erhard, K., Potthast, R.: A numerical study of the probe method. SIAM J. Sci. Comput. 28, 1597–1612 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Ikehata, M.: Reconstruction of obstacle from boundary measurements. Wave Motion 30, 205–223 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Ikehata, M.: Reconstruction of an obstacle from the scattering amplitude at a fixed frequency. Inverse Probl. 14, 949–954 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Kress, R.: On the numerical solution of a hypersingular integral equation in scattering theory. J. Comput. Appl. Math. 61, 345–360 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Liu, J.J.: Determination of Dirichlet-to-Neumann map for a mixed boundary problem. Appl. Math. Comput. 161, 843–864 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Liu, J.J., Cheng, J., Nakamura, G.: Reconstruction and uniqueness of an inverse scattering problem with impedance boundary. Sci. China, Ser. A 45, 1408–1419 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Liu, J.J., Nakamura, G., Sini, M.: Reconstruction of the shape and surface impedance for acoustic scattering data for an arbitrary cylinder. SIAM J. Appl. Math. 67, 1124–1146 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Liu, J.J., Sini, M.: On the accuracy of the numerical detection of complex obstacles from far-field data using the probe method. SIAM J. Sci. Comput. 31, 2665–2687 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Nakamura, G., Sini, M.: Obstacle and boundary determination from scattering data. SIAM J. Math. Anal. 39, 819–837 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Potthast, R.: Stability estimates and reconstructions in inverse acoustic scattering using singular sources. J. Comput. Appl. Math. 114, 247–274 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Potthast, R.: Point Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall/CRC, London (2001)

    Google Scholar 

  17. 17.

    Sylvester, J.: The Cauchy data and the scattering amplitude. Commun. Partial Differ. Equ. 19, 1735–1741 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Wang, H.B., Liu, J.J.: On the reconstruction of Dirichlet-to-Neumann map in inverse scattering problems with stability estimates. Science China Math. 53, 2069–2084 (2010)

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jijun Liu.

Additional information

This work is supported by Natural Science Foundation of China (No.11071039).

Communicated by Yuesheng Xu and Hongqi Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, H., Liu, J. Recovering the Dirichlet-to-Neumann map in inverse scattering problems using integral equation methods. Adv Comput Math 36, 279–297 (2012). https://doi.org/10.1007/s10444-011-9191-6

Download citation

Keywords

  • Inverse scattering problems
  • Dirichlet-to-Neumann map
  • Integral equation method
  • Numerics

Mathematics Subject Classifications (2010)

  • 35R30
  • 31A25
  • 45A05
  • 45Q05