Skip to main content
Log in

Eigenvalue approximations from below using Morley elements

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Rannacher discovered by numerical results that the Morley element eigenvalues could approximate the exact eigenvalues from below. This discovery is very important in engineering and mechanics computing. This note provides a theoretical proof for Rannacher’s observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armentano, M.G., Duran, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17, 92–101 (2004)

    MathSciNet  Google Scholar 

  2. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Model. Math. Anal. Numer. 19, 7–32 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Babuska, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. 2. Elsevier, North-Holland, Amsterdam (1991)

    Google Scholar 

  4. Beirao, da veiga L., Niiranen, J., Stenberg, R.: A posteriori error estimates for the Morley plate bending element. Numer. Math. 106, 165–179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  6. Ciarlet, P.G.: Basic error estimates for elliptic proplems. In: Handbook of Numerical Analysis, vol. 2. Elsevier, North-Holland, Amsterdam (1991)

    Google Scholar 

  7. Hu, J., Shi, Z.: A new a posteriori error estimate for the Morley element. Numer. Math. 112, 25–40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, J., Huang, Y.Q., Shen, H.M.: The lower approximation of eigenvalue by lumped mass finite element methods. J. Comput. Math. 22, 545–556 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Huang, J., Guo, L., Shi, Z.: Vibration analysis of Kirchhoff plates by the Morley element method. J. Comput. Appl. Math. 213, 14–34 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. Rev. Fr. Autom. Inform. Rech. Oper., Anal. Numer. 9(R-1), 9–53 (1975)

    MathSciNet  Google Scholar 

  11. Li, Y.A.: Lower approximation of eigenvalue by the nonconforming finite element method. Math. Numer. Sin. 30(2), 195–200 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Lin, Q., Tobiska, L., Zhou, A.: Superconvergence and extrapolation of nonconforming low order finite elements applied to the Poisson equation. IMA J. Numer. Anal. 25, 160–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, Q., Huang, H.T., Li, Z.C.: New expansions of numerical eigenvalues for \(-\triangle u=\lambda\rho u\) by nonconforming elements. Math. Comput. 77, 2061–2084 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, Q., Huang, H.T., Li, Z.C.: New expansions of numerical eigenvalues by Wilson’s elements. J. Comput. Appl. Math. 225, 213–226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, H.P., Yan, N.N.: Four finite element solutions and comparisions of problem for the Poisson equation eigenvalue. J. Numer. Method Comput. Appl. 2, 81–91 (2005)

    MathSciNet  Google Scholar 

  16. Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aeron. Q. 19, 149–169 (1968)

    Google Scholar 

  17. Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shi, Z.: Error estimates of Morley element. Chin. J. Numer. Math. Appl. 12, 102–108 (1990)

    Google Scholar 

  19. Wang, M., Shi, Z., Xu, J.: Some n-rectangle nonconforming finite elements for fourth order elliptic equations. J. Comput. Math. 25(4), 408–420 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Yang, Y.D.: A posteriori error estimates in Adini finite element for eigenvalue problems. J. Comput. Math. 18, 413–418 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Yang, Y.D.: Two-grid discretization schemes of the nonconforming FEM for eigenvalue problems. J. Comput. Math. 27(6), 748–763 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Yang, Y.D., Li, Q., Li, S.R.: Nonconforming finite element approximations of the Steklov eigenvalue problem. Appl. Numer. Math. 59, 2388–2401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, Y.D., Lin, F.B., Zhang, Z.M.: N-simplex Crouzeix-Raviart element for the second-order elliptic/eigenvalue problems. Int. J. Numer. Anal. Model 6(4), 615–626 (2009)

    MathSciNet  Google Scholar 

  24. Yang, Y.D., Zhang, Z.M., Lin, F.B.: Eigenvalue approximation from below using nonforming finite elements. Sci. China Math. 53(1), 137–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, Z.M., Yang, Y.D., Chen, Z.: Eigenvalue approximation from below by Wilson’s element. Math. Numer. Sin. 29(3), 319–321 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Zienkiewicz, O.C.: The Finite Element Method in Engineering Science. McGraw-Hill, London (1971)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Lin.

Additional information

Communicated by Aihui Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Lin, Q., Bi, H. et al. Eigenvalue approximations from below using Morley elements. Adv Comput Math 36, 443–450 (2012). https://doi.org/10.1007/s10444-011-9185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9185-4

Keywords

Mathematics Subject Classifications (2010)

Navigation