Abstract
Rannacher discovered by numerical results that the Morley element eigenvalues could approximate the exact eigenvalues from below. This discovery is very important in engineering and mechanics computing. This note provides a theoretical proof for Rannacher’s observations.
Similar content being viewed by others
References
Armentano, M.G., Duran, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17, 92–101 (2004)
Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Model. Math. Anal. Numer. 19, 7–32 (1985)
Babuska, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. 2. Elsevier, North-Holland, Amsterdam (1991)
Beirao, da veiga L., Niiranen, J., Stenberg, R.: A posteriori error estimates for the Morley plate bending element. Numer. Math. 106, 165–179 (2007)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New York (2002)
Ciarlet, P.G.: Basic error estimates for elliptic proplems. In: Handbook of Numerical Analysis, vol. 2. Elsevier, North-Holland, Amsterdam (1991)
Hu, J., Shi, Z.: A new a posteriori error estimate for the Morley element. Numer. Math. 112, 25–40 (2009)
Hu, J., Huang, Y.Q., Shen, H.M.: The lower approximation of eigenvalue by lumped mass finite element methods. J. Comput. Math. 22, 545–556 (2004)
Huang, J., Guo, L., Shi, Z.: Vibration analysis of Kirchhoff plates by the Morley element method. J. Comput. Appl. Math. 213, 14–34 (2008)
Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. Rev. Fr. Autom. Inform. Rech. Oper., Anal. Numer. 9(R-1), 9–53 (1975)
Li, Y.A.: Lower approximation of eigenvalue by the nonconforming finite element method. Math. Numer. Sin. 30(2), 195–200 (2008)
Lin, Q., Tobiska, L., Zhou, A.: Superconvergence and extrapolation of nonconforming low order finite elements applied to the Poisson equation. IMA J. Numer. Anal. 25, 160–181 (2005)
Lin, Q., Huang, H.T., Li, Z.C.: New expansions of numerical eigenvalues for \(-\triangle u=\lambda\rho u\) by nonconforming elements. Math. Comput. 77, 2061–2084 (2008)
Lin, Q., Huang, H.T., Li, Z.C.: New expansions of numerical eigenvalues by Wilson’s elements. J. Comput. Appl. Math. 225, 213–226 (2009)
Liu, H.P., Yan, N.N.: Four finite element solutions and comparisions of problem for the Poisson equation eigenvalue. J. Numer. Method Comput. Appl. 2, 81–91 (2005)
Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aeron. Q. 19, 149–169 (1968)
Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979)
Shi, Z.: Error estimates of Morley element. Chin. J. Numer. Math. Appl. 12, 102–108 (1990)
Wang, M., Shi, Z., Xu, J.: Some n-rectangle nonconforming finite elements for fourth order elliptic equations. J. Comput. Math. 25(4), 408–420 (2007)
Yang, Y.D.: A posteriori error estimates in Adini finite element for eigenvalue problems. J. Comput. Math. 18, 413–418 (2000)
Yang, Y.D.: Two-grid discretization schemes of the nonconforming FEM for eigenvalue problems. J. Comput. Math. 27(6), 748–763 (2009)
Yang, Y.D., Li, Q., Li, S.R.: Nonconforming finite element approximations of the Steklov eigenvalue problem. Appl. Numer. Math. 59, 2388–2401 (2009)
Yang, Y.D., Lin, F.B., Zhang, Z.M.: N-simplex Crouzeix-Raviart element for the second-order elliptic/eigenvalue problems. Int. J. Numer. Anal. Model 6(4), 615–626 (2009)
Yang, Y.D., Zhang, Z.M., Lin, F.B.: Eigenvalue approximation from below using nonforming finite elements. Sci. China Math. 53(1), 137–150 (2010)
Zhang, Z.M., Yang, Y.D., Chen, Z.: Eigenvalue approximation from below by Wilson’s element. Math. Numer. Sin. 29(3), 319–321 (2007)
Zienkiewicz, O.C.: The Finite Element Method in Engineering Science. McGraw-Hill, London (1971)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Aihui Zhou.
Rights and permissions
About this article
Cite this article
Yang, Y., Lin, Q., Bi, H. et al. Eigenvalue approximations from below using Morley elements. Adv Comput Math 36, 443–450 (2012). https://doi.org/10.1007/s10444-011-9185-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-011-9185-4