Skip to main content
Log in

A spectral method for elliptic equations: the Neumann problem

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Let Ω be an open, simply connected, and bounded region in ℝd, d ≥ 2, and assume its boundary Ω is smooth. Consider solving the elliptic partial differential equation − Δu + γu = f over Ω with a Neumann boundary condition. The problem is converted to an equivalent elliptic problem over the unit ball B, and then a spectral method is given that uses a special polynomial basis. In the case the Neumann problem is uniquely solvable, and with sufficiently smooth problem parameters, the method is shown to have very rapid convergence. Numerical examples illustrate exponential convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, K., Chien, D., Hansen, O.: A spectral method for elliptic equations: the Dirichlet problem. Adv. Comput. Math. doi:10.1007/s10444-009-9125-8 (to appear)

  2. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 2nd ed. Springer-Verlag, New York (2005)

    MATH  Google Scholar 

  3. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994)

    MATH  Google Scholar 

  4. Bagby, T., Bos, L., Levenberg, N.: Multivariate simultaneous approximation. Constr. Approx. 18, 569–577 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canuto, C., Quarteroni, A., Hussaini, My., Zang, T.: Spectral Methods in Fluid Mechanics. Springer-Verlag, New York (1988)

    Google Scholar 

  6. Canuto, C., Quarteroni, A., Hussaini, My., Zang, T.: Spectral Methods—Fundamentals in Single Domains. Springer-Verlag, New York (2006)

    MATH  Google Scholar 

  7. Doha, E., Abd-Elhameed, W.: Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials. SIAM J. Sci. Comput. 24, 548–571 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge Univ. Press, Cambridge MA (2001)

    Book  MATH  Google Scholar 

  9. Hansen, O., Atkinson, K., Chien, D.: On the norm of the hyperinterpolation operator on the unit disk and its use for the solution of the nonlinear Poisson equation. IMA J. Numer. Anal. 29, 257–283. doi:10.1093/imanum/drm052 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Logan, B., Shepp, L.: Optimal reconstruction of a function from its projections. Duke Math. J. 42, 645–659 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge Univ. Press, Cambridge MA (2000)

    MATH  Google Scholar 

  12. Mikhlin, S.: The Numerical Performance of Variational Methods. Noordhoff Pub., Groningen (1971)

    MATH  Google Scholar 

  13. Ragozin, D.: Constructive polynomial approximation on spheres and projective spaces. Trans. Amer. Math. Soc. 162, 157–170 (1971)

    MathSciNet  Google Scholar 

  14. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  15. Shen, J., Wang, L.: Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains. SIAM J. Numer. Anal. 45, 1954–1978 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Inc., Englewood Cliffs, NJ (1971)

    MATH  Google Scholar 

  17. Xu, Y.: Lecture notes on orthogonal polynomials of several variables. In: Advances in the Theory of Special Functions and Orthogonal Polynomials, pp. 135–188. Nova, Commack, NY (2004)

    Google Scholar 

  18. Xu, Y.: A family of Sobolev orthogonal polynomials on the unit ball. J. Approx. Theory 138, 232–241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendall Atkinson.

Additional information

Communicated by Yuesheng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkinson, K., Hansen, O. & Chien, D. A spectral method for elliptic equations: the Neumann problem. Adv Comput Math 34, 295–317 (2011). https://doi.org/10.1007/s10444-010-9154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-010-9154-3

Keywords

Mathematics Subject Classification (2010)

Navigation