Skip to main content
Log in

A new stabilized finite volume method for the stationary Stokes equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we develop and study a new stabilized finite volume method for the two-dimensional Stokes equations. This method is based on a local Gauss integration technique and the conforming elements of the lowest-equal order pair (i.e., the P 1P 1 pair). After a relationship between this method and a stabilized finite element method is established, an error estimate of optimal order in the H 1-norm for velocity and an estimate in the L 2-norm for pressure are obtained. An optimal error estimate in the L 2-norm for the velocity is derived under an additional assumption on the body force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N.: A stable finite element for the Stokes equations. Calcolo IV, 1–8 (1984)

    Google Scholar 

  2. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes. Calcolo 38, 173–199 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bochev, P., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44, 82–101 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bochev, P., Gunzburger, M.D.: An absolutely stable pressure-Poisson stabilized finite element method for the Stokes equations. SIAM J. Numer. Anal. 42, 1189–1207 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezzi, F., Douglas Jr., J.: Stabilized mixed methods for the Stokes problem. Numer. Math. 53, 225–235 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezzi, F., Fortin, M.: A minimal stabilization procedure for mixed nite element methods. Numer. Math. 89, 457–491 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Buscagliaa, G.C., Basombrio, F.G., Codinab, R.: Fourier analysis of an equal-order incompressible flow solver stabilized by pressure gradient projection. Internat. J. Numer. Methods Fluids 34, 65–92 (2000)

    Article  Google Scholar 

  9. Cai, Z., Mandel, J., McCormick, S.: The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28, 392–403 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dohrmann, C.R., Bochev, P.B.: A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Internat. J. Numer. Methods Fluids 46, 183–201 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, Z.: Finite Element Methods and Their Applications. Spring-Verlag, Heidelberg (2005)

    MATH  Google Scholar 

  12. Chen, Z.: The control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media 1, 689–706 (2006)

    MATH  Google Scholar 

  13. Chen, Z., Li, R., Zhou, A.: A note on the optimal L 2-estimate of finite volume element method. Adv. Comput. Math. 16, 291–303 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chou, S.H., Kwak, D.Y.: Analysis and convergence of a MAC scheme for the generalized Stokes problem. Numer. Methods Partial Differerential Equations 13, 147–162 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chou, S.H., Kwak, D.Y.: A covolume method based on rotated bilinears for the generalized Stokes problem. SIAM J. Numer. Anal. 35, 494–507 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chou, S.H., Li, Q.: Error estimates in L 2H 1 and \(L^{\infty}\) in co-volume methods for elliptic and parabolic problems: a unified approach. Math. Comp. 69, 103–120 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chou, S.H., Vassilevski, P.S.: A general mixed co-volume framework for constructing conservative schemes for elliptic problems. Math. Comp. 68, 991–1011 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Book  MATH  Google Scholar 

  19. Douglas, Jr., J., Wang, J.: An absolutely stabilized finite element method for the Stokes problem. Math. Comp. 52, 495–508 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin (1986)

    MATH  Google Scholar 

  22. Hughes, T., Franca, L., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg. 59, 85–99 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Layton, W.: Model reduction by constraints, discretization of ow problems and an induced pressure stabilization. Numer. Linear Algebra Appl. 12, 547–562 (2005)

    Article  MathSciNet  Google Scholar 

  24. Li, J., He, Y.: A new stabilized finite element method based on two local Gauss integrations for the Stokes equations. J. Comput. Appl. Math. (to appear)

  25. Li, J., Mei, L., He, Y.: A pressure-poisson stabilized finite element method for the non-stationary Stokes equations to circumvent the inf-sup condition. Appl. Math. Comput. 182, 24–35 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Li, J., He, Y., Chen, Z.: A new stabilized finite element method for the transient Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 197, 22–35 (2007)

    Article  MathSciNet  Google Scholar 

  27. Li, J., He, Y., Xu, H.: A multi-level stabilized finite element method for the stationary Navier–Stoke equations. Comput. Methods Appl. Mech. Engrg. 196, 2852–2862 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li, R.: On generalized difference methods for elliptic and parabolic differential equations. In: Feng, K., Lions, J.L. (eds.) Proceeding of the Symposium on the Finite Element Method between China and France, pp. 323–360. Science Press, Beijing, China (1982)

    Google Scholar 

  29. Li, R.: Generalized difference methods for a nonlinear Dirichlet problem. SIAM J. Numer. Anal. 24, 77–88 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Li, R., Chen, Z., Wu, W.: The Generalized Difference Method for Differential Equations-Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000)

    Google Scholar 

  31. Li, R., Zhu, P.: Generalized difference methods for second order elliptic partial differential equations (I) (in Chinese). Numer. Math. 4, 140–152 (1982)

    MATH  MathSciNet  Google Scholar 

  32. Rui, H.: Analysis on a finite volume element method for the Stokes problems. Acta Math. Appl. Sinica (English Ser) 3, 359–372 (2005)

    Article  MathSciNet  Google Scholar 

  33. Silvester, D.: Stabilized mixed finite element methods. Numerical Analysis Report, No. 262 (1995)

  34. Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam, New York (1984)

    MATH  Google Scholar 

  35. Wu, H., Li, R.: Error estimates for finite volume element methods for general second-order elliptic problems. Numer. Methods Partial Differential Equations 19, 693–708 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Xu, J., Zou, Q.: Analysis of linear and quadratic finite volume methods for elliptic equations. Report No. AM 298, Department of Mathematics, Penn State University, University Park, PA (2006)

  37. Ye, X.: On the relationship between finite volume and finite element methods applied to the Stokes equations. Numer. Methods Partial Differential Equations 5, 440–453 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangxin Chen.

Additional information

Communicated by: Jinchao Xu.

This work is supported in part by the NSF of China 10701001 and by the US National Science Foundation grant DMS-0609995 and CMG Chair Funds in Reservoir Simulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Chen, Z. A new stabilized finite volume method for the stationary Stokes equations. Adv Comput Math 30, 141–152 (2009). https://doi.org/10.1007/s10444-007-9060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-007-9060-5

Keywords

Mathematics Subject Classifications (2000)

Navigation