Skip to main content
Log in

Radial basis interpolation on homogeneous manifolds: convergence rates

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Pointwise error estimates for approximation on compact homogeneous manifolds using radial kernels are presented. For a \({\mathcal C}^{2r}\) positive definite kernel κ the pointwise error at x for interpolation by translates of κ goes to 0 like ρ r, where ρ is the density of the interpolating set on a fixed neighbourhood of x. Tangent space techniques are used to lift the problem from the manifold to Euclidean space, where methods for proving such error estimates are well established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfeld, P., Neamtu, M., Schumaker, L.L.: Fitting scattered data on sphere-like surfaces using spherical splines. J. Comput. Appl. Math. 73, 5–43 (1995)

    Article  MathSciNet  Google Scholar 

  2. Atteia, M.: Hilbertian Kernels: Spline Functions. Studies in Computational Mathematics IV, North Holland (1994)

  3. Bos, L., De Marchi, S.: Limiting values under scaling of the Lebesgue function for polynomial interpolation on spheres. J. Approx. Theory 96, 366–377 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Freeden, W.: On spherical spline approximation and interpolation. Math. Methods Appl. Sci. 3, 551–575 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. von Golitschek M., Light, W.A.: Interpolation by polynomials and radial basis functions on spheres. Constr. Approx. 17, 1–18 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jetter, K., Stöckler, J., Ward, J.D.: Error estimates for scattered data interpolation on spheres. Math. Comput. 68, 733–747 (1999)

    Article  MATH  Google Scholar 

  7. Levesley, J., Light, W.A., Ragozin, D.L., Sun, X.: A simple approach to the variational theory for interpolation on spheres. In: Müller, M.W., Buhmann, M.D., Mache, D.H., Felten, M. (eds.) New Developments in Approximation Theory, ISNM, vol. 132, pp. 117–143. Birkhauser, Cambridge, MA (1999)

    Google Scholar 

  8. Levesley, J., Ragozin, D.L.: Positive definite kernel interpolation on manifolds: Convergence rates. In: Schumaker, L.L., Stockler, J. (eds.) Approximation Theory X, pp. 277–285. Vanderbilt Univ. Press, Nashville, TN (2002)

    Google Scholar 

  9. Light, W.A., Wayne, H.: Error estimates for approximation by radial basis functions. In: Singh, S.P., Carbone, A. (eds.) Wavelet Analysis and Approximation Theory, pp. 215–246. Kluwer, Dordrecht (1995)

    Google Scholar 

  10. Ragozin, D.L., Levesley, J.: The density of translates of zonal kernels on compact homogeneous spaces. J. Approx. Theory 103, 252–268 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Levesley.

Additional information

Communicated by J. Levesley.

Supported by EPSRC Grant GR/L36222.

Partially supported by NSF Grant DMS-9972004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levesley, J., Ragozin, D.L. Radial basis interpolation on homogeneous manifolds: convergence rates. Adv Comput Math 27, 237–246 (2007). https://doi.org/10.1007/s10444-005-9000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-005-9000-1

Keywords

Mathematics Subject Classifications (2000)

Navigation