Skip to main content
Log in

On the matrix completion problem for multivariate filter bank construction

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We survey the main techniques for the construction of multivariate filter banks and present new results about special matrices of order four and eight suitable for their construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Adams, Vector fields on the sphere, Ann. Math. 75 (1962) 603–632.

    Article  Google Scholar 

  2. R. Bott and J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958) 87–89.

    MathSciNet  MATH  Google Scholar 

  3. Q.H. Chen, C.A. Micchelli, S.L. Peng and Y. Xu, Multivariate filter banks having matrix factorization, SIAM J. Matrix Anal. Appl. 25 (2003) 517–531.

    Article  MathSciNet  MATH  Google Scholar 

  4. Z. Chen, C.A. Micchelli and Y. Xu, A construction of interpolating wavelets on invariant sets, Compositio Math. 68 (1999) 1560–1587.

    MathSciNet  Google Scholar 

  5. W. Dahmen and C.A. Micchelli, Banded matrices with banded inverses II: Locally finite decomposition of spline spaces, Constr. Approx. 9 (1993) 263–281.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61 (SIAM, Philadelphia, 1992).

    MATH  Google Scholar 

  7. G.B. Folland, Real Analysis (Wiley, New York, 1984).

    MATH  Google Scholar 

  8. M. Gasca, C.A. Micchelli and J.M. Peña, Banded matrices with banded inverses III: P-slanted matrices, in: Wavelets, Images and Surface Fitting, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker, (A.K. Peters Wellesley, MA, 1994) pp. 245–268.

    Google Scholar 

  9. T.N.T. Goodman, Construction of wavelets with multiplicity, Rend. Mat. (7) 15 (1994) 665–691.

    Google Scholar 

  10. K. Gröchenig, Analyse multi-echelles et bases d'ondelettes, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 13–15.

    MATH  Google Scholar 

  11. V. Guillemin and A. Pollack, Differential Topology (Prentice-Hall, Englewood Cliffs, NJ, 1974).

    MATH  Google Scholar 

  12. W.J. He and M.J. Lai, Examples of bivariate nonseparable compactly supported orthonormal continuous wavelets, Preprint (2004).

  13. J.G. Hocking and G.S. Young, Topology (Addison-Wesley, MA, 1961).

    MATH  Google Scholar 

  14. I.M. James, The Topology of Stiefel Manifolds, London Mathematical Society Lecture Note Series, Vol. 24 (Cambridge Univ. Press, Cambridge, 1976).

    MATH  Google Scholar 

  15. R.Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets II: Powers of two, in: Curves and Surfaces, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, San Diego, 1991) pp. 209–246.

    Google Scholar 

  16. R.Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets V: Extensibility of trigonometric polynomials, Computing 48 (1992) 61–72.

    Article  MathSciNet  MATH  Google Scholar 

  17. R.Q. Jia and C.A. Micchelli, On linear independence of integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. 36 (1992) 69–85.

    MathSciNet  Google Scholar 

  18. R.Q. Jia and Z. Shen, Multiresolution and wavelets, Proc. Edinburgh Math. Soc. 37 (1994) 271–300.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Karlin, Total Positivity, Vol. I (Stanford Univ. Press, Stanford, CA, 1968).

    MATH  Google Scholar 

  20. J. Kovacevic and M. Vetterli, Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for R n, IEEE Trans. Inform. Theory 38 (1992) 533–555.

    Article  MathSciNet  Google Scholar 

  21. A.G. Kurosh, Lectures on General Algebra, translated by K.A. Hersch (Chelsea Publishing Company, New York, 1963).

    Google Scholar 

  22. M.J. Lai, Construction of multivariate compactly supported orthonormal wavelets, Preprint (2004).

  23. M.J. Lai and D.N. Roach, The nonexistence of bivariate symmetric wavelets with short support and two vanishing moments, Preprint (2003).

  24. T.V. Lam, Serre's Conjecture, Lecture Notes in Mathematics, Vol. 635 (Springer, New York, 1978).

    MATH  Google Scholar 

  25. S. Lang, Algebra (Addison-Wesley, Menlo Park, CA, 1984).

    MATH  Google Scholar 

  26. C.A. Micchelli, Using the refinement equation for the construction of prewavelets, Numer. Algorithms 1 (1991) 75–116.

    Article  MathSciNet  MATH  Google Scholar 

  27. C.A. Micchelli, A tutorial on multivariate wavelet decomposition, in: Approximation Theory, Spline Functions and Applications, ed. S.P. Singh (Kluwer, Dordrecht, 1992) pp. 191–213.

    Google Scholar 

  28. C.A. Micchelli, Using the refinement equation for the construction of prewavelets VI: Shift invariant subspaces, in: Approximation Theory, Spline Functions and Applications, ed. S.P. Singh (Kluwer, Dordrecht, 1992) pp. 213–222.

    Google Scholar 

  29. C.A. Micchelli and Y. Xu, Using the matrix refinement equation for the construction of wavelets on invariant sets, Appl. Comput. Harmon. Anal. 1 (1994) 391–401.

    Article  MathSciNet  MATH  Google Scholar 

  30. C.A. Micchelli and Y. Xu, Reconstruction and decomposition algorithms for biorthogonal multiwavelets, Multidimens. Systems Signal Process. 8 (1997) 31–69.

    Article  MathSciNet  MATH  Google Scholar 

  31. T.Q. Nguyen and P.P. Vaidyanathan, Two-channel perfect reconstruction FIR QMF structure which yield linear phase FIR analysis and synthesis filters, IEEE Trans. Acoustics, Speech and Signal Process. 37 (1989) 676–690.

    Article  Google Scholar 

  32. J.A. Packer and M.A. Rieffel, Wavelet filter functions, the matrix completion problem and projective modules over C(T n), J. Fourier Anal. Appl. 9 (2003) 101–116.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976) 167–171.

    Article  MathSciNet  MATH  Google Scholar 

  34. S.D. Riemenschneider and Z. Shen, Wavelets and pre-wavelets in low dimensions, J. Approx. Theory 71 (1992) 18–38.

    Article  MathSciNet  MATH  Google Scholar 

  35. W. Rudin, Functional Analysis (McGraw-Hill, New York, 1991).

    MATH  Google Scholar 

  36. J.P. Serre, Modules projectifs et espace filbré a fibre vectorielle, Sén. Dubreil-Pisot, 23 (1957/1958).

  37. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer, Berlin, 1983).

    Google Scholar 

  38. A.A. Suslin, Projective modules over a polynomial ring are free, Soviet Math. Dokl. 17 (1976) 1160–1164.

    MATH  Google Scholar 

  39. R.G. Swan, Projective modules over Laurent polynommial rings, Trans. Amer. Math. Soc. 237 (1978) 111–120.

    Article  MathSciNet  MATH  Google Scholar 

  40. O. Taussky, (1, 2, 4, 8) sums of squares and Hadamard matrices, in: Combinatorics, Proceedings of Symposia in Pure Mathematics (Amer. Math. Soc., 1971) pp. 229–233.

  41. P.P. Vaidyanathan, Quadrature mirror filter banks, M-band extensions and perfect reconstruction techniques, IEEE ASSP Mag. 4 (3) (1987) 4–20.

    Article  Google Scholar 

  42. P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall, Englewood Cliffs, NJ, 1993).

    MATH  Google Scholar 

  43. B.L. Van der Waerden, Modern Algebra, Vol. 2 (Unger, New York, 1950).

    Google Scholar 

  44. M. Vetterli, Filter banks allowing perfect reconstruction, Signal Process. 10(3) (April 1986) 219–244.

    Article  MathSciNet  Google Scholar 

  45. P. Wojtaszczyk, A Mathematical Introduction to Wavelets, London Mathematical Society Student Texts, Vol. 37 (Cambridge Univ. Press, Cambridge, UK, 1997).

    MATH  Google Scholar 

  46. P.J. Woods, Wavelets and C *-algebra, Ph.D. Thesis, Flinders University of South Australia (2003).

  47. X. Xu, Construction of two-dimensional nonseparable orthonormal wavelets of short support, Ph.D. Thesis, University of Georgia (2001).

  48. D.C. Youla and Q. Gnavi, Notes on n-dimensional system theory, IEEE Trans. Circuits Systems 26(2) (February 1979).

  49. D.C. Youla and P.F. Pickel, The Quillen–Suslin theorem and the structure of n-dimensional elementary polynomial matrices, IEEE Trans. Circuits Systems 31(6) (June 1984).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuesheng Xu.

Additional information

Communicated by J. Carnicer and J.M. Peña

Qiuhui Chen: Supported in part by NSFC under grant 10201034 and project-sponsored by SRF for ROCS, SEM.

Charles A. Micchelli: Supported in part by the US National Science Foundation under grant CCR-0407476.

Yuesheng Xu: All correspondence to this author. Supported in part by the US National Science Foundation under grant CCR-0407476, by the Natural Science Foundation of China under grant 10371122 and by the Chinese Academy of Sciences under the program “One Hundred Distinguished Chinese Young Scientists”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Micchelli, C.A. & Xu, Y. On the matrix completion problem for multivariate filter bank construction. Adv Comput Math 26, 173–204 (2007). https://doi.org/10.1007/s10444-005-7535-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-005-7535-9

Keywords

Mathematics subject classifications (2000)

Navigation