Skip to main content
Log in

The optimal convergence of the hp version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In the framework of the Jacobi-weighted Besov spaces, we analyze the lower and upper bounds of errors in the hp version of boundary element solutions on quasiuniform meshes for elliptic problems on polygons. Both lower bound and upper bound are optimal in h and p, and they are of the same order. The optimal convergence of the hp version of boundary element method with quasiuniform meshes is proved, which includes the optimal rates for h version with quasiuniform meshes and the p version with quasiuniform degrees as two special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, Inc., New York, 1970).

    Google Scholar 

  2. I. Babuška and B.Q. Guo, Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces, Part I: Approximability of functions in the weighted Besov spaces, SIAM J. Numer. Anal. 39 (2001) 1512–1538.

    Article  MathSciNet  Google Scholar 

  3. I. Babuška and B.Q. Guo, Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces, Part II: Optimal rate of convergence of the p-version finite element solutions, Math. Mod. Meth. Appl. Sci. (M3AS) 12 (2002) 689–719.

    Google Scholar 

  4. I. Babuška and B.Q. Guo, Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces, Part III: Inverse approximation theorems, Report 99-32, TICAM, University of Texas, Austin (1999).

  5. I. Babuška and B.Q. Guo, Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions, Numer. Math. 85 (2000) 219–255.

    Article  MathSciNet  Google Scholar 

  6. I. Babuška and M. Suri, The hp version of the finite element method with quasiuniform meshes, RAIRO Modél. Math. Anal. Numér. 21 (1987) 199–238.

    Google Scholar 

  7. I. Babuška and M. Suri, The optimal convergence rate of the p-version of the finite element method, SIAM J. Numer. Anal. 24 (1987) 750–776.

    Article  MathSciNet  Google Scholar 

  8. J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223 (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  9. M. Costabel and E.P. Stephan, The normal derivative of the double layer potential on polygons and Galerkin approximation, Appl. Anal. 16 (1983) 205–228.

    MathSciNet  Google Scholar 

  10. W. Gui and I. Babuška, The h, p and hp versions of the finite element method in 1 dimension, Part I: The error analysis of the p-version, Numer. Math. 49 (1986) 577–612.

    Article  MathSciNet  Google Scholar 

  11. W. Gui and I. Babuška, The h, p and hp versions of the finite element method in 1 dimension, Part II: The error analysis of the h and hp versions, Numer. Math. 49 (1986) 613–657.

    Article  MathSciNet  Google Scholar 

  12. W. Gui and I. Babuška, The h, p and hp versions of the finite element method in 1 dimension, Part III: The adaptive hp version, Numer. Math. 49 (1986) 659–683.

    Article  MathSciNet  Google Scholar 

  13. B.Q. Guo, Best approximation for the p-version of the finite element method in three dimensions in the framework of the Jacobi-weighted Besov spaces, in: Current Trends in Scientific Computing, eds. R.G.Z. Chen and K. Li (Amer. Math. Soc., 2003).

  14. B.Q. Guo and W. Sun, Optimal convergence of the hp version of the finite element method with quasiuniform meshes, preprint.

  15. B.Q. Guo and N. Heuer, The optimal rate of convergence of the p-version of the boundary element method in two dimensions, Numer. Math. 98 (2004) 499–538.

    Article  MathSciNet  Google Scholar 

  16. B.-Y. Guo, Gegenbauer approximations in certern Hillbert spaces and its applications to singular differential equations, SIAM J. Numer. Anal. 37 (2000) 621–645.

    MATH  MathSciNet  Google Scholar 

  17. B.-Y. Guo, Jacobi spectral approximation and its applications to singular differential equations on the half line, J. Comput. Math. 18 (2000) 95–112.

    MATH  MathSciNet  Google Scholar 

  18. B.-Y. Guo and L.-L. Wang, Jacobi interpolation approximations and their applications to singular equations, Adv. Comput. Math. 14 (2001) 227–276.

    Article  MathSciNet  Google Scholar 

  19. M. Hahne and E.P. Stephan, Schwarz iterations for the efficient solution of screen problems with boundary elements, Computing 55 (1996) 61–85.

    Article  MathSciNet  Google Scholar 

  20. N. Heuer and E.P. Stephan, The hp-version of the boundary element method on polygons, J. Integral Equations Appl. 8 (1996) 173–212.

    MathSciNet  Google Scholar 

  21. E.P. Stephan and M. Suri, On the convergence of the p-version of the boundary element method, Math. Comp. 52 (1989) 31–48.

    Article  MathSciNet  Google Scholar 

  22. E.P. Stephan and M. Suri, The hp version of the boundary element method on polygonal domains with quasiuniform meshes, RAIRO Modél. Math. Anal. Numér. 25 (1991) 783–807.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benqi Guo.

Additional information

Communicated by Yuesheng Xu

Dedicated to Professor Charles Micchelli on the occasion of his sixtieth birthday

Mathematics subject classification (2000)

65N38.

Benqi Guo: The work of this author was supported by NSERC of Canada under Grant OGP0046726 and was complete during visiting Newton Institute for Mathematical Sciences, Cambridge University for participating in special program “Computational Challenges in PDEs” in 2003.

Norbert Heuer: This author is supported by Fondecyt project No. 1010220 and by the FONDAP Program (Chile) on Numerical Analysis. Current address: Mathematical Sciences, Brunel University, Uxbridge, U.K.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, B., Heuer, N. The optimal convergence of the hp version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains. Adv Comput Math 24, 353–374 (2006). https://doi.org/10.1007/s10444-004-7618-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-7618-z

Keywords

Navigation