Skip to main content

Advertisement

Log in

Preparation of Small-Diameter Phenolic-Based CFRP Rods Using Multi-Die Pultrusion

  • Research
  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper introduces a novel multi-die pultrusion system for producing small-diameter phenolic-based CFRP rods. The system consists of multiple short heating dies arranged in series, facilitating the escape of vapor from the die cavities and improving the product quality. The results demonstrate that compared to the traditional dies, the rods produced using the multi-die pultrusion system exhibit higher dimensional stability, and their interlaminar shear strength is mostly above 35 MPa, reaching up to 52 MPa. Compared to the traditional mold, in one instance, its interlaminar shear strength value increased by nearly 71.5%, but in another case, it was only 14.72%. Due to relying solely on one control sample, the results are inconclusive. SEM indicates that the rods produced using the multi-die pultrusion system have fewer voids and better fiber-resin bonding compared to the traditional dies. Additionally, cross-sectional optical microscopy shows that when the pultrusion speed is at or below 0.6 m/min, the impregnation of carbon fibers by phenolic resin is more effective. The proposed multi-die pultrusion system provides a new idea for the production of small-diameter rods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data are available from the corresponding author on reasonable request.

References

  1. Kumar, P., Srivastava, V.K.: A review on wear and Friction Performance of Carbon–Carbon composites at High Temperature. Int J Appl Ceram Technol 13, 702–710 (2016). https://doi.org/10.1111/ijac.12538

    Article  CAS  Google Scholar 

  2. Su, J.M., Xiao, Z.C., Liu, Y.Q., Meng, F.C., Peng, Z.G., Gu, L.M., Li, G.F., Xing, R.P.: Preparation and characterization of carbon/carbon aircraft brake materials with long service life and good frictional properties. Xinxing Tan Cailiao/New Carbon Materials 25, 329–334 (2010). https://doi.org/10.1016/S1872-5805(09)60037-8

    Article  CAS  Google Scholar 

  3. Zhao, D., Cui, H., Liu, J., Cheng, H., Guo, Q., Gao, P., Li, R., Li, Q., Hou, W.: A high-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with stable friction performance. Coatings 12, 768 (2022). https://doi.org/10.3390/coatings12060768

    Article  CAS  Google Scholar 

  4. Yang, Z., Jiao, Y., Xie, J., Jiao, W., Chen, L., Zhu, L., Du, X.: Effect of weaving parameters on fiber structure of 3D woven preforms: A Micro-CT investigation. J Compos Mater 56, 2609–2620 (2022). https://doi.org/10.1177/00219983221101173

    Article  CAS  Google Scholar 

  5. Warren, K.C., Lopez-Anido, R.A., Goering, J.: Experimental investigation of three-dimensional woven composites. Compos Part A Appl Sci Manuf 73, 242–259 (2015). https://doi.org/10.1016/j.compositesa.2015.03.011

    Article  CAS  Google Scholar 

  6. Liu, J., Li, T., Hao, Z., Li, F., Ji, A.: Application of needling technology on Reinforced fabrics of C/C composite materials. Aerosp. Mater. Technol. 38, 8–10 (2008)

    CAS  Google Scholar 

  7. Li, Y., Cui, H., Zheng, R., Ji, A., Zhou, S.: Fabrication and performance of a C/C composite using a needled non-woven carbon fiber felt as a preform. Carbon N Y 117, 489 (2017). https://doi.org/10.1016/j.carbon.2017.02.078

    Article  Google Scholar 

  8. Tan, K.T., Watanabe, N., Iwahori, Y., Ishikawa, T.: Effect of stitch density and stitch thread thickness on compression after impact strength and response of stitched composites. Compos Sci Technol 72, 587–598 (2012). https://doi.org/10.1016/j.compscitech.2012.01.003

    Article  CAS  Google Scholar 

  9. He, Y., Mei, M., Yang, X., Wei, K., Qu, Z., Fang, D.: Experimental characterization of the compaction behavior in preforming process for 3D stitched carbon fabric. Compos Commun 19, 203–209 (2020). https://doi.org/10.1016/j.coco.2020.04.005

    Article  Google Scholar 

  10. Zhang, X., Li, Y., Chu, Q., Li, W.: Pultrusion and properties of the twisted carbon fiber/phenolic resin Z-pin. J. Aerosp. Power 30, 1638–1644 (2015). https://doi.org/10.13224/j.cnki.jasp.2015.07.015

    Article  Google Scholar 

  11. Lei, C., Jun-bo, X., Jing, F., Li, C.: Preparation and Mechanical properties analysis of spiral z-pin. J. Text. Sci. Eng. 39, 71–75 (2022)

    Google Scholar 

  12. Wang, X.X., Chen, L.: Manufacture and characteristics of fibrous composite Z-pins. Appl Mech Mater 33, 110–113 (2010)

    Article  CAS  Google Scholar 

  13. Ren, H., Meng, X.: Preparation of z-pin from different resin and evaluation of interlaminar reinforcement effect by pullout test. Adv. Mat. Res. 486, 444–448 (2012)

    CAS  Google Scholar 

  14. Hedayati Velis, H., Golzar, M., Yousefzade, O.: Composites based on HDPE, jute fiber, wood, and thermoplastic starch in tubular pultrusion die: The correlation between mechanical performance and microstructure. Adv Polym Technol 37, 3483–3491 (2018). https://doi.org/10.1002/adv.22132

    Article  CAS  Google Scholar 

  15. Zoller, A., Escalé, P., Gérard, P.: Pultrusion of bendable continuous fibers Reinforced composites with reactive Acrylic Thermoplastic ELIUM® Resin. Front Mater 6, 290 (2019). https://doi.org/10.3389/fmats.2019.00290

    Article  Google Scholar 

  16. Mukherji, A., Tarapore, N., Njuguna, J.: Determination of cure mechanism inside die for a part manufacturing during large-scale pultrusion. J. Appl. Polym. Sci. 139, (2022). https://doi.org/10.1002/app.52035

  17. Chen, Z., Zeng, W., Chen, Y., Li, W., Liu, H.: Comparative study of thermal degradation behavior of high char yield phenolic resin and commercial resin. Key Eng Mater 500, 94–97 (2012). https://doi.org/10.4028/www.scientific.net/KEM.500.94

    Article  CAS  Google Scholar 

  18. Yang-fei, C., Zhi-qin, C., Hong-Wbo, L.I.U.: Effect of the structure on the Pyrolysis Property of Phenolic Resin. Polym Mater Sci Eng 25, 71–74 (2009). https://doi.org/10.16865/j.cnki.1000-7555.2009.05.021

    Article  Google Scholar 

  19. Chen, Z., Zeng, W., Chen, Y., Li, W., Liu, H.: Influence of F/P on structure and thermal property of phenolic resin. Key Eng Mater 500, 98–103 (2012)

    Article  CAS  Google Scholar 

  20. Hamad, S.F., Farr, N., Fei, T., Shukor, N.F., Dean, J.S., Hayes, S.A., Foreman, J.P., Rodenburg, C.: Optimizing size and distribution of voids in phenolic resins through the choice of catalyst types. J Appl Polym Sci 136, 48249 (2019). https://doi.org/10.1002/app.48249

    Article  CAS  Google Scholar 

  21. Natali, M., Kenny, J., Torre, L.: Phenolic matrix nanocomposites based on commercial grade resols: Synthesis and characterization. Compos Sci Technol 70, 571–577 (2010). https://doi.org/10.1016/j.compscitech.2009.12.005

    Article  CAS  Google Scholar 

  22. Pupin, C., Ross, A., Dubois, C., Rietsch, J.C., Ruiz, E.: Predicting porosity formation in phenolic resins for RTM manufacturing: The porosity map. Compos Part A Appl Sci Manuf 100, 294–304 (2017). https://doi.org/10.1016/j.compositesa.2017.05.023

    Article  CAS  Google Scholar 

  23. Yang, X., Dajun, L.Y.H., Hongquan, L., Lisha, L.: Curing characteristics of phenolic and epoxy transition layer and properties of composites. J. Aerosp. Power 36, 1974–1985 (2021). https://doi.org/10.13224/j.cnki.jasp.20200498

    Article  CAS  Google Scholar 

  24. Volk, M., Yuksel, O., Baran, I., Hattel, J.H., Spangenberg, J., Sandberg, M.: Cost-efficient, automated, and sustainable composite profile manufacture: A review of the state of the art, innovations, and future of pultrusion technologies. Compos B Eng 246, 110135 (2022). https://doi.org/10.1016/j.compositesb.2022.110135

    Article  Google Scholar 

  25. Li, J., Joshi, S.C., Lam, Y.C.: Curing optimization for pultruded composite sections. Compos Sci Technol 62, 457–467 (2002). https://doi.org/10.1016/S0266-3538(02)00018-0

    Article  CAS  Google Scholar 

  26. Gadam, S.U.K., Roux, J.A., Mccarty, T.A., Vaughan, J.G.: The impact of pultrusion processing parameters on resin pressure rise inside a tapered cylindrical die for glass-fibre/epoxy composites. Compos Sci Technol 60, 945–958 (2000). https://doi.org/10.1016/S0266-3538(99)00181-5

    Article  CAS  Google Scholar 

  27. Borges, S.G., Ferreira, C.A., Andrade, J.M., Prevedello, A.L.A.: The influence of bath temperature on the properties of pultruded glass fiber reinforced rods. J Reinf Plast Compos 34, 1221–1230 (2015). https://doi.org/10.1177/0731684415587411

    Article  CAS  Google Scholar 

  28. Hagstrand, P.O., Bonjour, F., Månson, J.A.E.: The influence of void content on the structural flexural performance of unidirectional glass fibre reinforced polypropylene composites. Compos Part A Appl Sci Manuf 36, 705–714 (2005). https://doi.org/10.1016/j.compositesa.2004.03.007

    Article  CAS  Google Scholar 

  29. Zhu, H.-Y., Li, D.-H., Zhang, D.-X., Wu, B.-C., Chen, Y.-Y.: Influence of voids on interlaminar shear strength of carbon/epoxy fabric laminates. Trans Nonferrous Met Soc China 19, S470–S475 (2009). https://doi.org/10.1016/s1003-6326(10)60091-x

    Article  CAS  Google Scholar 

  30. Gooranorimi, O., Dauer, E., Nanni, A.: Microstructural investigation of glass fiber reinforced polymer bars. Compos. Part B-Engineering 110, 388–395 (2017). https://doi.org/10.1016/j.compositesb.2016.11.029

    Article  CAS  Google Scholar 

  31. Zheng, F., Ren, Z., Xu, B., Wan, K., Cai, J., Yang, J., Zhang, T., Wang, P., Niu, B., Zhang, Y., Long, D.: Elucidating multiple-scale reaction behaviors of phenolic resin pyrolysis via TG-FTIR and ReaxFF molecular dynamics simulations. J Anal Appl Pyrolysis 157, 105222 (2021). https://doi.org/10.1016/j.jaap.2021.105222

    Article  CAS  Google Scholar 

  32. Trick, K.A., Saliba, T.E.: Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon N Y 33, 1509–1515 (1995). https://doi.org/10.1016/0008-6223(95)00092-R

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Jiangsu Tianniao High-tech Co., LTD in China for its financial and experimental support.

Author information

Authors and Affiliations

Authors

Contributions

Guannan Li: Methodology, Investigation, Data Curation, Writing Original Draft. Junwei Qi: Conceptualization, Funding Acquisition, Resources, Formal Analysis, Review & Editing. Yuequan Wang: Investigation, Writing – review & editing. Jiaqi Shi: Methodology, Writing – review & editing. Rui Jia: Methodology, Investigation, Validation, Data Curation.

Corresponding authors

Correspondence to Junwei Qi or Yuequan Wang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Qi, J., Wang, Y. et al. Preparation of Small-Diameter Phenolic-Based CFRP Rods Using Multi-Die Pultrusion. Appl Compos Mater (2024). https://doi.org/10.1007/s10443-023-10193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10443-023-10193-x

Keywords

Navigation